Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptiffisupp Structured version   Visualization version   GIF version

Theorem mptiffisupp 32666
Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
mptiffisupp.f 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
mptiffisupp.a (𝜑𝐴𝑈)
mptiffisupp.b (𝜑𝐵 ∈ Fin)
mptiffisupp.c ((𝜑𝑥𝐵) → 𝐶𝑉)
mptiffisupp.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptiffisupp (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem mptiffisupp
StepHypRef Expression
1 mptiffisupp.f . . 3 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
2 mptiffisupp.a . . . 4 (𝜑𝐴𝑈)
32mptexd 7153 . . 3 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) ∈ V)
41, 3eqeltrid 2835 . 2 (𝜑𝐹 ∈ V)
5 mptiffisupp.z . 2 (𝜑𝑍𝑊)
61funmpt2 6515 . . 3 Fun 𝐹
76a1i 11 . 2 (𝜑 → Fun 𝐹)
8 partfun 6623 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
91, 8eqtri 2754 . . . 4 𝐹 = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
109oveq1i 7351 . . 3 (𝐹 supp 𝑍) = (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍)
11 inss2 4183 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
1211a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
1312sselda 3929 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
14 mptiffisupp.c . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶𝑉)
1513, 14syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶𝑉)
1615fmpttd 7043 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶𝑉)
17 incom 4154 . . . . . 6 (𝐵𝐴) = (𝐴𝐵)
18 mptiffisupp.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 infi 9149 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2018, 19syl 17 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ Fin)
2117, 20eqeltrrid 2836 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
2216, 21, 5fidmfisupp 9251 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) finSupp 𝑍)
23 difexg 5262 . . . . . 6 (𝐴𝑈 → (𝐴𝐵) ∈ V)
24 mptexg 7150 . . . . . 6 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
252, 23, 243syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
26 funmpt 6514 . . . . . 6 Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
2726a1i 11 . . . . 5 (𝜑 → Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
28 supppreima 32664 . . . . . . . 8 ((Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∧ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V ∧ 𝑍𝑊) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
2926, 25, 5, 28mp3an2i 1468 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
30 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
3130mpteq1d 5176 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ ∅ ↦ 𝑍))
32 mpt0 6618 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑍) = ∅
3331, 32eqtrdi 2782 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3433cnveqd 5810 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
35 cnv0 6082 . . . . . . . . . . 11 ∅ = ∅
3634, 35eqtrdi 2782 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3736imaeq1d 6003 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
38 0ima 6022 . . . . . . . . 9 (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅
3937, 38eqtrdi 2782 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
40 eqid 2731 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
41 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝐵) ≠ ∅)
4240, 41rnmptc 7136 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = {𝑍})
4342difeq1d 4070 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ({𝑍} ∖ {𝑍}))
44 difid 4321 . . . . . . . . . . 11 ({𝑍} ∖ {𝑍}) = ∅
4543, 44eqtrdi 2782 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ∅)
4645imaeq2d 6004 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅))
47 ima0 6021 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅) = ∅
4846, 47eqtrdi 2782 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
4939, 48pm2.61dane 3015 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
5029, 49eqtrd 2766 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ∅)
51 0fi 8959 . . . . . 6 ∅ ∈ Fin
5250, 51eqeltrdi 2839 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) ∈ Fin)
5325, 5, 27, 52isfsuppd 9245 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) finSupp 𝑍)
5422, 53fsuppun 9266 . . 3 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍) ∈ Fin)
5510, 54eqeltrid 2835 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
564, 5, 7, 55isfsuppd 9245 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4278  ifcif 4470  {csn 4571   class class class wbr 5086  cmpt 5167  ccnv 5610  ran crn 5612  cima 5614  Fun wfun 6470  (class class class)co 7341   supp csupp 8085  Fincfn 8864   finSupp cfsupp 9240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-supp 8086  df-1o 8380  df-en 8865  df-fin 8868  df-fsupp 9241
This theorem is referenced by:  elrspunsn  33386  gsummoncoe1fzo  33550  extdgfialglem2  33698
  Copyright terms: Public domain W3C validator