Proof of Theorem mptiffisupp
| Step | Hyp | Ref
| Expression |
| 1 | | mptiffisupp.f |
. . 3
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝑍)) |
| 2 | | mptiffisupp.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑈) |
| 3 | 2 | mptexd 7227 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝑍)) ∈ V) |
| 4 | 1, 3 | eqeltrid 2837 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
| 5 | | mptiffisupp.z |
. 2
⊢ (𝜑 → 𝑍 ∈ 𝑊) |
| 6 | 1 | funmpt2 6586 |
. . 3
⊢ Fun 𝐹 |
| 7 | 6 | a1i 11 |
. 2
⊢ (𝜑 → Fun 𝐹) |
| 8 | | partfun 6696 |
. . . . 5
⊢ (𝑥 ∈ 𝐴 ↦ if(𝑥 ∈ 𝐵, 𝐶, 𝑍)) = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍)) |
| 9 | 1, 8 | eqtri 2757 |
. . . 4
⊢ 𝐹 = ((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍)) |
| 10 | 9 | oveq1i 7424 |
. . 3
⊢ (𝐹 supp 𝑍) = (((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍)) supp 𝑍) |
| 11 | | inss2 4220 |
. . . . . . . . 9
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 |
| 12 | 11 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐵) |
| 13 | 12 | sselda 3965 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → 𝑥 ∈ 𝐵) |
| 14 | | mptiffisupp.c |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) |
| 15 | 13, 14 | syldan 591 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐵)) → 𝐶 ∈ 𝑉) |
| 16 | 15 | fmpttd 7116 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶):(𝐴 ∩ 𝐵)⟶𝑉) |
| 17 | | incom 4191 |
. . . . . 6
⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) |
| 18 | | mptiffisupp.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ Fin) |
| 19 | | infi 9285 |
. . . . . . 7
⊢ (𝐵 ∈ Fin → (𝐵 ∩ 𝐴) ∈ Fin) |
| 20 | 18, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐵 ∩ 𝐴) ∈ Fin) |
| 21 | 17, 20 | eqeltrrid 2838 |
. . . . 5
⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ Fin) |
| 22 | 16, 21, 5 | fidmfisupp 9395 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) finSupp 𝑍) |
| 23 | | difexg 5311 |
. . . . . 6
⊢ (𝐴 ∈ 𝑈 → (𝐴 ∖ 𝐵) ∈ V) |
| 24 | | mptexg 7224 |
. . . . . 6
⊢ ((𝐴 ∖ 𝐵) ∈ V → (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∈ V) |
| 25 | 2, 23, 24 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∈ V) |
| 26 | | funmpt 6585 |
. . . . . 6
⊢ Fun
(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) |
| 27 | 26 | a1i 11 |
. . . . 5
⊢ (𝜑 → Fun (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍)) |
| 28 | | supppreima 32647 |
. . . . . . . 8
⊢ ((Fun
(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∧ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∈ V ∧ 𝑍 ∈ 𝑊) → ((𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) supp 𝑍) = (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍}))) |
| 29 | 26, 25, 5, 28 | mp3an2i 1467 |
. . . . . . 7
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) supp 𝑍) = (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍}))) |
| 30 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → (𝐴 ∖ 𝐵) = ∅) |
| 31 | 30 | mpteq1d 5219 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) = (𝑥 ∈ ∅ ↦ 𝑍)) |
| 32 | | mpt0 6691 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∅ ↦ 𝑍) = ∅ |
| 33 | 31, 32 | eqtrdi 2785 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) = ∅) |
| 34 | 33 | cnveqd 5868 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → ◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) = ◡∅) |
| 35 | | cnv0 6142 |
. . . . . . . . . . 11
⊢ ◡∅ = ∅ |
| 36 | 34, 35 | eqtrdi 2785 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → ◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) = ∅) |
| 37 | 36 | imaeq1d 6059 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍})) = (∅ “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍}))) |
| 38 | | 0ima 6078 |
. . . . . . . . 9
⊢ (∅
“ (ran (𝑥 ∈
(𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅ |
| 39 | 37, 38 | eqtrdi 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) = ∅) → (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅) |
| 40 | | eqid 2734 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) = (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) |
| 41 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → (𝐴 ∖ 𝐵) ≠ ∅) |
| 42 | 40, 41 | rnmptc 7210 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) = {𝑍}) |
| 43 | 42 | difeq1d 4107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍}) = ({𝑍} ∖ {𝑍})) |
| 44 | | difid 4358 |
. . . . . . . . . . 11
⊢ ({𝑍} ∖ {𝑍}) = ∅ |
| 45 | 43, 44 | eqtrdi 2785 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍}) = ∅) |
| 46 | 45 | imaeq2d 6060 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍})) = (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ ∅)) |
| 47 | | ima0 6077 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ ∅) =
∅ |
| 48 | 46, 47 | eqtrdi 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 ∖ 𝐵) ≠ ∅) → (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅) |
| 49 | 39, 48 | pm2.61dane 3018 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅) |
| 50 | 29, 49 | eqtrd 2769 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) supp 𝑍) = ∅) |
| 51 | | 0fi 9065 |
. . . . . 6
⊢ ∅
∈ Fin |
| 52 | 50, 51 | eqeltrdi 2841 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) supp 𝑍) ∈ Fin) |
| 53 | 25, 5, 27, 52 | isfsuppd 9389 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍) finSupp 𝑍) |
| 54 | 22, 53 | fsuppun 9410 |
. . 3
⊢ (𝜑 → (((𝑥 ∈ (𝐴 ∩ 𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴 ∖ 𝐵) ↦ 𝑍)) supp 𝑍) ∈ Fin) |
| 55 | 10, 54 | eqeltrid 2837 |
. 2
⊢ (𝜑 → (𝐹 supp 𝑍) ∈ Fin) |
| 56 | 4, 5, 7, 55 | isfsuppd 9389 |
1
⊢ (𝜑 → 𝐹 finSupp 𝑍) |