Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptiffisupp Structured version   Visualization version   GIF version

Theorem mptiffisupp 31902
Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
mptiffisupp.f 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
mptiffisupp.a (𝜑𝐴𝑈)
mptiffisupp.b (𝜑𝐵 ∈ Fin)
mptiffisupp.c ((𝜑𝑥𝐵) → 𝐶𝑉)
mptiffisupp.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptiffisupp (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem mptiffisupp
StepHypRef Expression
1 mptiffisupp.f . . 3 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
2 mptiffisupp.a . . . 4 (𝜑𝐴𝑈)
32mptexd 7222 . . 3 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) ∈ V)
41, 3eqeltrid 2837 . 2 (𝜑𝐹 ∈ V)
5 mptiffisupp.z . 2 (𝜑𝑍𝑊)
61funmpt2 6584 . . 3 Fun 𝐹
76a1i 11 . 2 (𝜑 → Fun 𝐹)
8 partfun 6694 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
91, 8eqtri 2760 . . . 4 𝐹 = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
109oveq1i 7415 . . 3 (𝐹 supp 𝑍) = (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍)
11 inss2 4228 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
1211a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
1312sselda 3981 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
14 mptiffisupp.c . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶𝑉)
1513, 14syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶𝑉)
1615fmpttd 7111 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶𝑉)
17 incom 4200 . . . . . 6 (𝐵𝐴) = (𝐴𝐵)
18 mptiffisupp.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 infi 9264 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2018, 19syl 17 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ Fin)
2117, 20eqeltrrid 2838 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
2216, 21, 5fidmfisupp 9367 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) finSupp 𝑍)
23 difexg 5326 . . . . . 6 (𝐴𝑈 → (𝐴𝐵) ∈ V)
24 mptexg 7219 . . . . . 6 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
252, 23, 243syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
26 funmpt 6583 . . . . . 6 Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
2726a1i 11 . . . . 5 (𝜑 → Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
28 supppreima 31900 . . . . . . . 8 ((Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∧ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V ∧ 𝑍𝑊) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
2926, 25, 5, 28mp3an2i 1466 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
30 simpr 485 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
3130mpteq1d 5242 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ ∅ ↦ 𝑍))
32 mpt0 6689 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑍) = ∅
3331, 32eqtrdi 2788 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3433cnveqd 5873 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
35 cnv0 6137 . . . . . . . . . . 11 ∅ = ∅
3634, 35eqtrdi 2788 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3736imaeq1d 6056 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
38 0ima 6074 . . . . . . . . 9 (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅
3937, 38eqtrdi 2788 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
40 eqid 2732 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
41 simpr 485 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝐵) ≠ ∅)
4240, 41rnmptc 7204 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = {𝑍})
4342difeq1d 4120 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ({𝑍} ∖ {𝑍}))
44 difid 4369 . . . . . . . . . . 11 ({𝑍} ∖ {𝑍}) = ∅
4543, 44eqtrdi 2788 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ∅)
4645imaeq2d 6057 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅))
47 ima0 6073 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅) = ∅
4846, 47eqtrdi 2788 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
4939, 48pm2.61dane 3029 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
5029, 49eqtrd 2772 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ∅)
51 0fin 9167 . . . . . 6 ∅ ∈ Fin
5250, 51eqeltrdi 2841 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) ∈ Fin)
5325, 5, 27, 52isfsuppd 9362 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) finSupp 𝑍)
5422, 53fsuppun 9378 . . 3 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍) ∈ Fin)
5510, 54eqeltrid 2837 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
564, 5, 7, 55isfsuppd 9362 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cdif 3944  cun 3945  cin 3946  wss 3947  c0 4321  ifcif 4527  {csn 4627   class class class wbr 5147  cmpt 5230  ccnv 5674  ran crn 5676  cima 5678  Fun wfun 6534  (class class class)co 7405   supp csupp 8142  Fincfn 8935   finSupp cfsupp 9357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-supp 8143  df-1o 8462  df-en 8936  df-fin 8939  df-fsupp 9358
This theorem is referenced by:  elrspunsn  32535  gsummoncoe1fzo  32656
  Copyright terms: Public domain W3C validator