Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptiffisupp Structured version   Visualization version   GIF version

Theorem mptiffisupp 32513
Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
mptiffisupp.f 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
mptiffisupp.a (𝜑𝐴𝑈)
mptiffisupp.b (𝜑𝐵 ∈ Fin)
mptiffisupp.c ((𝜑𝑥𝐵) → 𝐶𝑉)
mptiffisupp.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptiffisupp (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem mptiffisupp
StepHypRef Expression
1 mptiffisupp.f . . 3 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
2 mptiffisupp.a . . . 4 (𝜑𝐴𝑈)
32mptexd 7230 . . 3 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) ∈ V)
41, 3eqeltrid 2829 . 2 (𝜑𝐹 ∈ V)
5 mptiffisupp.z . 2 (𝜑𝑍𝑊)
61funmpt2 6587 . . 3 Fun 𝐹
76a1i 11 . 2 (𝜑 → Fun 𝐹)
8 partfun 6697 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
91, 8eqtri 2753 . . . 4 𝐹 = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
109oveq1i 7423 . . 3 (𝐹 supp 𝑍) = (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍)
11 inss2 4225 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
1211a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
1312sselda 3973 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
14 mptiffisupp.c . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶𝑉)
1513, 14syldan 589 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶𝑉)
1615fmpttd 7118 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶𝑉)
17 incom 4196 . . . . . 6 (𝐵𝐴) = (𝐴𝐵)
18 mptiffisupp.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 infi 9286 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2018, 19syl 17 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ Fin)
2117, 20eqeltrrid 2830 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
2216, 21, 5fidmfisupp 9391 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) finSupp 𝑍)
23 difexg 5325 . . . . . 6 (𝐴𝑈 → (𝐴𝐵) ∈ V)
24 mptexg 7227 . . . . . 6 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
252, 23, 243syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
26 funmpt 6586 . . . . . 6 Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
2726a1i 11 . . . . 5 (𝜑 → Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
28 supppreima 32511 . . . . . . . 8 ((Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∧ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V ∧ 𝑍𝑊) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
2926, 25, 5, 28mp3an2i 1462 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
30 simpr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
3130mpteq1d 5239 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ ∅ ↦ 𝑍))
32 mpt0 6692 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑍) = ∅
3331, 32eqtrdi 2781 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3433cnveqd 5873 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
35 cnv0 6141 . . . . . . . . . . 11 ∅ = ∅
3634, 35eqtrdi 2781 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3736imaeq1d 6058 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
38 0ima 6077 . . . . . . . . 9 (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅
3937, 38eqtrdi 2781 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
40 eqid 2725 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
41 simpr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝐵) ≠ ∅)
4240, 41rnmptc 7213 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = {𝑍})
4342difeq1d 4114 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ({𝑍} ∖ {𝑍}))
44 difid 4367 . . . . . . . . . . 11 ({𝑍} ∖ {𝑍}) = ∅
4543, 44eqtrdi 2781 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ∅)
4645imaeq2d 6059 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅))
47 ima0 6076 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅) = ∅
4846, 47eqtrdi 2781 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
4939, 48pm2.61dane 3019 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
5029, 49eqtrd 2765 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ∅)
51 0fin 9189 . . . . . 6 ∅ ∈ Fin
5250, 51eqeltrdi 2833 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) ∈ Fin)
5325, 5, 27, 52isfsuppd 9385 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) finSupp 𝑍)
5422, 53fsuppun 9405 . . 3 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍) ∈ Fin)
5510, 54eqeltrid 2829 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
564, 5, 7, 55isfsuppd 9385 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  cdif 3938  cun 3939  cin 3940  wss 3941  c0 4319  ifcif 4525  {csn 4625   class class class wbr 5144  cmpt 5227  ccnv 5672  ran crn 5674  cima 5676  Fun wfun 6537  (class class class)co 7413   supp csupp 8158  Fincfn 8957   finSupp cfsupp 9380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-supp 8159  df-1o 8480  df-en 8958  df-fin 8961  df-fsupp 9381
This theorem is referenced by:  elrspunsn  33190  gsummoncoe1fzo  33321
  Copyright terms: Public domain W3C validator