Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptiffisupp Structured version   Visualization version   GIF version

Theorem mptiffisupp 32675
Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
mptiffisupp.f 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
mptiffisupp.a (𝜑𝐴𝑈)
mptiffisupp.b (𝜑𝐵 ∈ Fin)
mptiffisupp.c ((𝜑𝑥𝐵) → 𝐶𝑉)
mptiffisupp.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptiffisupp (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem mptiffisupp
StepHypRef Expression
1 mptiffisupp.f . . 3 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
2 mptiffisupp.a . . . 4 (𝜑𝐴𝑈)
32mptexd 7221 . . 3 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) ∈ V)
41, 3eqeltrid 2839 . 2 (𝜑𝐹 ∈ V)
5 mptiffisupp.z . 2 (𝜑𝑍𝑊)
61funmpt2 6580 . . 3 Fun 𝐹
76a1i 11 . 2 (𝜑 → Fun 𝐹)
8 partfun 6690 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
91, 8eqtri 2759 . . . 4 𝐹 = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
109oveq1i 7420 . . 3 (𝐹 supp 𝑍) = (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍)
11 inss2 4218 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
1211a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
1312sselda 3963 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
14 mptiffisupp.c . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶𝑉)
1513, 14syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶𝑉)
1615fmpttd 7110 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶𝑉)
17 incom 4189 . . . . . 6 (𝐵𝐴) = (𝐴𝐵)
18 mptiffisupp.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 infi 9279 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2018, 19syl 17 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ Fin)
2117, 20eqeltrrid 2840 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
2216, 21, 5fidmfisupp 9389 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) finSupp 𝑍)
23 difexg 5304 . . . . . 6 (𝐴𝑈 → (𝐴𝐵) ∈ V)
24 mptexg 7218 . . . . . 6 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
252, 23, 243syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
26 funmpt 6579 . . . . . 6 Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
2726a1i 11 . . . . 5 (𝜑 → Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
28 supppreima 32673 . . . . . . . 8 ((Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∧ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V ∧ 𝑍𝑊) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
2926, 25, 5, 28mp3an2i 1468 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
30 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
3130mpteq1d 5215 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ ∅ ↦ 𝑍))
32 mpt0 6685 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑍) = ∅
3331, 32eqtrdi 2787 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3433cnveqd 5860 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
35 cnv0 6134 . . . . . . . . . . 11 ∅ = ∅
3634, 35eqtrdi 2787 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3736imaeq1d 6051 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
38 0ima 6070 . . . . . . . . 9 (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅
3937, 38eqtrdi 2787 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
40 eqid 2736 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
41 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝐵) ≠ ∅)
4240, 41rnmptc 7204 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = {𝑍})
4342difeq1d 4105 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ({𝑍} ∖ {𝑍}))
44 difid 4356 . . . . . . . . . . 11 ({𝑍} ∖ {𝑍}) = ∅
4543, 44eqtrdi 2787 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ∅)
4645imaeq2d 6052 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅))
47 ima0 6069 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅) = ∅
4846, 47eqtrdi 2787 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
4939, 48pm2.61dane 3020 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
5029, 49eqtrd 2771 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ∅)
51 0fi 9061 . . . . . 6 ∅ ∈ Fin
5250, 51eqeltrdi 2843 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) ∈ Fin)
5325, 5, 27, 52isfsuppd 9383 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) finSupp 𝑍)
5422, 53fsuppun 9404 . . 3 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍) ∈ Fin)
5510, 54eqeltrid 2839 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
564, 5, 7, 55isfsuppd 9383 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  ifcif 4505  {csn 4606   class class class wbr 5124  cmpt 5206  ccnv 5658  ran crn 5660  cima 5662  Fun wfun 6530  (class class class)co 7410   supp csupp 8164  Fincfn 8964   finSupp cfsupp 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-supp 8165  df-1o 8485  df-en 8965  df-fin 8968  df-fsupp 9379
This theorem is referenced by:  elrspunsn  33449  gsummoncoe1fzo  33612
  Copyright terms: Public domain W3C validator