Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mptiffisupp Structured version   Visualization version   GIF version

Theorem mptiffisupp 32649
Description: Conditions for a mapping function defined with a conditional to have finite support. (Contributed by Thierry Arnoux, 20-Feb-2025.)
Hypotheses
Ref Expression
mptiffisupp.f 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
mptiffisupp.a (𝜑𝐴𝑈)
mptiffisupp.b (𝜑𝐵 ∈ Fin)
mptiffisupp.c ((𝜑𝑥𝐵) → 𝐶𝑉)
mptiffisupp.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptiffisupp (𝜑𝐹 finSupp 𝑍)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑉   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐶(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑊(𝑥)

Proof of Theorem mptiffisupp
StepHypRef Expression
1 mptiffisupp.f . . 3 𝐹 = (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍))
2 mptiffisupp.a . . . 4 (𝜑𝐴𝑈)
32mptexd 7227 . . 3 (𝜑 → (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) ∈ V)
41, 3eqeltrid 2837 . 2 (𝜑𝐹 ∈ V)
5 mptiffisupp.z . 2 (𝜑𝑍𝑊)
61funmpt2 6586 . . 3 Fun 𝐹
76a1i 11 . 2 (𝜑 → Fun 𝐹)
8 partfun 6696 . . . . 5 (𝑥𝐴 ↦ if(𝑥𝐵, 𝐶, 𝑍)) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
91, 8eqtri 2757 . . . 4 𝐹 = ((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
109oveq1i 7424 . . 3 (𝐹 supp 𝑍) = (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍)
11 inss2 4220 . . . . . . . . 9 (𝐴𝐵) ⊆ 𝐵
1211a1i 11 . . . . . . . 8 (𝜑 → (𝐴𝐵) ⊆ 𝐵)
1312sselda 3965 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝑥𝐵)
14 mptiffisupp.c . . . . . . 7 ((𝜑𝑥𝐵) → 𝐶𝑉)
1513, 14syldan 591 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐵)) → 𝐶𝑉)
1615fmpttd 7116 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶):(𝐴𝐵)⟶𝑉)
17 incom 4191 . . . . . 6 (𝐵𝐴) = (𝐴𝐵)
18 mptiffisupp.b . . . . . . 7 (𝜑𝐵 ∈ Fin)
19 infi 9285 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
2018, 19syl 17 . . . . . 6 (𝜑 → (𝐵𝐴) ∈ Fin)
2117, 20eqeltrrid 2838 . . . . 5 (𝜑 → (𝐴𝐵) ∈ Fin)
2216, 21, 5fidmfisupp 9395 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝐶) finSupp 𝑍)
23 difexg 5311 . . . . . 6 (𝐴𝑈 → (𝐴𝐵) ∈ V)
24 mptexg 7224 . . . . . 6 ((𝐴𝐵) ∈ V → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
252, 23, 243syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V)
26 funmpt 6585 . . . . . 6 Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
2726a1i 11 . . . . 5 (𝜑 → Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍))
28 supppreima 32647 . . . . . . . 8 ((Fun (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∧ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∈ V ∧ 𝑍𝑊) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
2926, 25, 5, 28mp3an2i 1467 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
30 simpr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) = ∅)
3130mpteq1d 5219 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ ∅ ↦ 𝑍))
32 mpt0 6691 . . . . . . . . . . . . 13 (𝑥 ∈ ∅ ↦ 𝑍) = ∅
3331, 32eqtrdi 2785 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3433cnveqd 5868 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
35 cnv0 6142 . . . . . . . . . . 11 ∅ = ∅
3634, 35eqtrdi 2785 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = ∅)
3736imaeq1d 6059 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})))
38 0ima 6078 . . . . . . . . 9 (∅ “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅
3937, 38eqtrdi 2785 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
40 eqid 2734 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)
41 simpr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (𝐴𝐵) ≠ ∅)
4240, 41rnmptc 7210 . . . . . . . . . . . 12 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) = {𝑍})
4342difeq1d 4107 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ({𝑍} ∖ {𝑍}))
44 difid 4358 . . . . . . . . . . 11 ({𝑍} ∖ {𝑍}) = ∅
4543, 44eqtrdi 2785 . . . . . . . . . 10 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍}) = ∅)
4645imaeq2d 6060 . . . . . . . . 9 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅))
47 ima0 6077 . . . . . . . . 9 ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ ∅) = ∅
4846, 47eqtrdi 2785 . . . . . . . 8 ((𝜑 ∧ (𝐴𝐵) ≠ ∅) → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
4939, 48pm2.61dane 3018 . . . . . . 7 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) “ (ran (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) ∖ {𝑍})) = ∅)
5029, 49eqtrd 2769 . . . . . 6 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) = ∅)
51 0fi 9065 . . . . . 6 ∅ ∈ Fin
5250, 51eqeltrdi 2841 . . . . 5 (𝜑 → ((𝑥 ∈ (𝐴𝐵) ↦ 𝑍) supp 𝑍) ∈ Fin)
5325, 5, 27, 52isfsuppd 9389 . . . 4 (𝜑 → (𝑥 ∈ (𝐴𝐵) ↦ 𝑍) finSupp 𝑍)
5422, 53fsuppun 9410 . . 3 (𝜑 → (((𝑥 ∈ (𝐴𝐵) ↦ 𝐶) ∪ (𝑥 ∈ (𝐴𝐵) ↦ 𝑍)) supp 𝑍) ∈ Fin)
5510, 54eqeltrid 2837 . 2 (𝜑 → (𝐹 supp 𝑍) ∈ Fin)
564, 5, 7, 55isfsuppd 9389 1 (𝜑𝐹 finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  Vcvv 3464  cdif 3930  cun 3931  cin 3932  wss 3933  c0 4315  ifcif 4507  {csn 4608   class class class wbr 5125  cmpt 5207  ccnv 5666  ran crn 5668  cima 5670  Fun wfun 6536  (class class class)co 7414   supp csupp 8168  Fincfn 8968   finSupp cfsupp 9384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-supp 8169  df-1o 8489  df-en 8969  df-fin 8972  df-fsupp 9385
This theorem is referenced by:  elrspunsn  33398  gsummoncoe1fzo  33559
  Copyright terms: Public domain W3C validator