| Step | Hyp | Ref
| Expression |
| 1 | | df-3an 1089 |
. . . 4
⊢ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅)) |
| 2 | | n0 4353 |
. . . . . . . 8
⊢ (𝑥 ≠ ∅ ↔
∃𝑎 𝑎 ∈ 𝑥) |
| 3 | | n0 4353 |
. . . . . . . 8
⊢ (𝑦 ≠ ∅ ↔
∃𝑏 𝑏 ∈ 𝑦) |
| 4 | 2, 3 | anbi12i 628 |
. . . . . . 7
⊢ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔
(∃𝑎 𝑎 ∈ 𝑥 ∧ ∃𝑏 𝑏 ∈ 𝑦)) |
| 5 | | exdistrv 1955 |
. . . . . . 7
⊢
(∃𝑎∃𝑏(𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ↔ (∃𝑎 𝑎 ∈ 𝑥 ∧ ∃𝑏 𝑏 ∈ 𝑦)) |
| 6 | 4, 5 | bitr4i 278 |
. . . . . 6
⊢ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔
∃𝑎∃𝑏(𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦)) |
| 7 | | simpll 767 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝐽 ∈ PConn) |
| 8 | | simprll 779 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑎 ∈ 𝑥) |
| 9 | | simplrl 777 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑥 ∈ 𝐽) |
| 10 | | elunii 4912 |
. . . . . . . . . . 11
⊢ ((𝑎 ∈ 𝑥 ∧ 𝑥 ∈ 𝐽) → 𝑎 ∈ ∪ 𝐽) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑎 ∈ ∪ 𝐽) |
| 12 | | simprlr 780 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑏 ∈ 𝑦) |
| 13 | | simplrr 778 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑦 ∈ 𝐽) |
| 14 | | elunii 4912 |
. . . . . . . . . . 11
⊢ ((𝑏 ∈ 𝑦 ∧ 𝑦 ∈ 𝐽) → 𝑏 ∈ ∪ 𝐽) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → 𝑏 ∈ ∪ 𝐽) |
| 16 | | eqid 2737 |
. . . . . . . . . . 11
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 17 | 16 | pconncn 35229 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ PConn ∧ 𝑎 ∈ ∪ 𝐽
∧ 𝑏 ∈ ∪ 𝐽)
→ ∃𝑓 ∈ (II
Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) |
| 18 | 7, 11, 15, 17 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) |
| 19 | | simplrr 778 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑥 ∩ 𝑦) = ∅) |
| 20 | | simplrr 778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽) → (𝑓‘1) = 𝑏) |
| 21 | 20 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑓‘1) = 𝑏) |
| 22 | | iiuni 24907 |
. . . . . . . . . . . . . . . . 17
⊢ (0[,]1) =
∪ II |
| 23 | | iiconn 24913 |
. . . . . . . . . . . . . . . . . 18
⊢ II ∈
Conn |
| 24 | 23 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → II ∈
Conn) |
| 25 | | simprll 779 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑓 ∈ (II Cn 𝐽)) |
| 26 | 9 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑥 ∈ 𝐽) |
| 27 | | uncom 4158 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∪ 𝑥) = (𝑥 ∪ 𝑦) |
| 28 | | simprr 773 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑥 ∪ 𝑦) = ∪ 𝐽) |
| 29 | 27, 28 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑦 ∪ 𝑥) = ∪ 𝐽) |
| 30 | 13 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑦 ∈ 𝐽) |
| 31 | | elssuni 4937 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ 𝐽 → 𝑦 ⊆ ∪ 𝐽) |
| 32 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑦 ⊆ ∪ 𝐽) |
| 33 | | incom 4209 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) |
| 34 | 33, 19 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑦 ∩ 𝑥) = ∅) |
| 35 | | uneqdifeq 4493 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ⊆ ∪ 𝐽
∧ (𝑦 ∩ 𝑥) = ∅) → ((𝑦 ∪ 𝑥) = ∪ 𝐽 ↔ (∪ 𝐽
∖ 𝑦) = 𝑥)) |
| 36 | 32, 34, 35 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → ((𝑦 ∪ 𝑥) = ∪ 𝐽 ↔ (∪ 𝐽
∖ 𝑦) = 𝑥)) |
| 37 | 29, 36 | mpbid 232 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (∪ 𝐽
∖ 𝑦) = 𝑥) |
| 38 | | pconntop 35230 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) |
| 39 | 38 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝐽 ∈ Top) |
| 40 | 16 | opncld 23041 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ (Clsd‘𝐽)) |
| 41 | 39, 30, 40 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (∪ 𝐽
∖ 𝑦) ∈
(Clsd‘𝐽)) |
| 42 | 37, 41 | eqeltrrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑥 ∈ (Clsd‘𝐽)) |
| 43 | | 0elunit 13509 |
. . . . . . . . . . . . . . . . . 18
⊢ 0 ∈
(0[,]1) |
| 44 | 43 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 0 ∈
(0[,]1)) |
| 45 | | simplrl 777 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽) → (𝑓‘0) = 𝑎) |
| 46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑓‘0) = 𝑎) |
| 47 | 8 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑎 ∈ 𝑥) |
| 48 | 46, 47 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑓‘0) ∈ 𝑥) |
| 49 | 22, 24, 25, 26, 42, 44, 48 | conncn 23434 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑓:(0[,]1)⟶𝑥) |
| 50 | | 1elunit 13510 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
(0[,]1) |
| 51 | | ffvelcdm 7101 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓:(0[,]1)⟶𝑥 ∧ 1 ∈ (0[,]1)) →
(𝑓‘1) ∈ 𝑥) |
| 52 | 49, 50, 51 | sylancl 586 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑓‘1) ∈ 𝑥) |
| 53 | 21, 52 | eqeltrrd 2842 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑏 ∈ 𝑥) |
| 54 | 12 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → 𝑏 ∈ 𝑦) |
| 55 | | inelcm 4465 |
. . . . . . . . . . . . . 14
⊢ ((𝑏 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) → (𝑥 ∩ 𝑦) ≠ ∅) |
| 56 | 53, 54, 55 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → (𝑥 ∩ 𝑦) ≠ ∅) |
| 57 | 19, 56 | pm2.21ddne 3026 |
. . . . . . . . . . . 12
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥 ∪ 𝑦) = ∪ 𝐽)) → ¬ (𝑥 ∪ 𝑦) = ∪ 𝐽) |
| 58 | 57 | expr 456 |
. . . . . . . . . . 11
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ((𝑥 ∪ 𝑦) = ∪ 𝐽 → ¬ (𝑥 ∪ 𝑦) = ∪ 𝐽)) |
| 59 | 58 | pm2.01d 190 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ¬ (𝑥 ∪ 𝑦) = ∪ 𝐽) |
| 60 | 59 | neqned 2947 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) |
| 61 | 18, 60 | rexlimddv 3161 |
. . . . . . . 8
⊢ (((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) ∧ ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) ∧ (𝑥 ∩ 𝑦) = ∅)) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽) |
| 62 | 61 | exp32 420 |
. . . . . . 7
⊢ ((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 63 | 62 | exlimdvv 1934 |
. . . . . 6
⊢ ((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (∃𝑎∃𝑏(𝑎 ∈ 𝑥 ∧ 𝑏 ∈ 𝑦) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 64 | 6, 63 | biimtrid 242 |
. . . . 5
⊢ ((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) → ((𝑥 ∩ 𝑦) = ∅ → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 65 | 64 | impd 410 |
. . . 4
⊢ ((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
| 66 | 1, 65 | biimtrid 242 |
. . 3
⊢ ((𝐽 ∈ PConn ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
| 67 | 66 | ralrimivva 3202 |
. 2
⊢ (𝐽 ∈ PConn →
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽)) |
| 68 | 16 | toptopon 22923 |
. . . 4
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 69 | 38, 68 | sylib 218 |
. . 3
⊢ (𝐽 ∈ PConn → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
| 70 | | dfconn2 23427 |
. . 3
⊢ (𝐽 ∈ (TopOn‘∪ 𝐽)
→ (𝐽 ∈ Conn
↔ ∀𝑥 ∈
𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 71 | 69, 70 | syl 17 |
. 2
⊢ (𝐽 ∈ PConn → (𝐽 ∈ Conn ↔
∀𝑥 ∈ 𝐽 ∀𝑦 ∈ 𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥 ∩ 𝑦) = ∅) → (𝑥 ∪ 𝑦) ≠ ∪ 𝐽))) |
| 72 | 67, 71 | mpbird 257 |
1
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Conn) |