Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnconn Structured version   Visualization version   GIF version

Theorem pconnconn 35253
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconnconn (𝐽 ∈ PConn → 𝐽 ∈ Conn)

Proof of Theorem pconnconn
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅))
2 n0 4328 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ∃𝑎 𝑎𝑥)
3 n0 4328 . . . . . . . 8 (𝑦 ≠ ∅ ↔ ∃𝑏 𝑏𝑦)
42, 3anbi12i 628 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
5 exdistrv 1955 . . . . . . 7 (∃𝑎𝑏(𝑎𝑥𝑏𝑦) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
64, 5bitr4i 278 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ∃𝑎𝑏(𝑎𝑥𝑏𝑦))
7 simpll 766 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝐽 ∈ PConn)
8 simprll 778 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎𝑥)
9 simplrl 776 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
10 elunii 4888 . . . . . . . . . . 11 ((𝑎𝑥𝑥𝐽) → 𝑎 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎 𝐽)
12 simprlr 779 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏𝑦)
13 simplrr 777 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑦𝐽)
14 elunii 4888 . . . . . . . . . . 11 ((𝑏𝑦𝑦𝐽) → 𝑏 𝐽)
1512, 13, 14syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏 𝐽)
16 eqid 2735 . . . . . . . . . . 11 𝐽 = 𝐽
1716pconncn 35246 . . . . . . . . . 10 ((𝐽 ∈ PConn ∧ 𝑎 𝐽𝑏 𝐽) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
187, 11, 15, 17syl3anc 1373 . . . . . . . . 9 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
19 simplrr 777 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = ∅)
20 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘1) = 𝑏)
2120adantl 481 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) = 𝑏)
22 iiuni 24825 . . . . . . . . . . . . . . . . 17 (0[,]1) = II
23 iiconn 24831 . . . . . . . . . . . . . . . . . 18 II ∈ Conn
2423a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → II ∈ Conn)
25 simprll 778 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓 ∈ (II Cn 𝐽))
269adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥𝐽)
27 uncom 4133 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥) = (𝑥𝑦)
28 simprr 772 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = 𝐽)
2927, 28eqtrid 2782 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = 𝐽)
3013adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦𝐽)
31 elssuni 4913 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐽𝑦 𝐽)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦 𝐽)
33 incom 4184 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥) = (𝑥𝑦)
3433, 19eqtrid 2782 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = ∅)
35 uneqdifeq 4468 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝐽 ∧ (𝑦𝑥) = ∅) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3632, 34, 35syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3729, 36mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) = 𝑥)
38 pconntop 35247 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ PConn → 𝐽 ∈ Top)
3938ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝐽 ∈ Top)
4016opncld 22971 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4139, 30, 40syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4237, 41eqeltrrd 2835 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
43 0elunit 13486 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,]1)
4443a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 0 ∈ (0[,]1))
45 simplrl 776 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘0) = 𝑎)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) = 𝑎)
478adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑎𝑥)
4846, 47eqeltrd 2834 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) ∈ 𝑥)
4922, 24, 25, 26, 42, 44, 48conncn 23364 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓:(0[,]1)⟶𝑥)
50 1elunit 13487 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
51 ffvelcdm 7071 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑥 ∧ 1 ∈ (0[,]1)) → (𝑓‘1) ∈ 𝑥)
5249, 50, 51sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) ∈ 𝑥)
5321, 52eqeltrrd 2835 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑥)
5412adantr 480 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑦)
55 inelcm 4440 . . . . . . . . . . . . . 14 ((𝑏𝑥𝑏𝑦) → (𝑥𝑦) ≠ ∅)
5653, 54, 55syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) ≠ ∅)
5719, 56pm2.21ddne 3016 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ¬ (𝑥𝑦) = 𝐽)
5857expr 456 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ((𝑥𝑦) = 𝐽 → ¬ (𝑥𝑦) = 𝐽))
5958pm2.01d 190 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ¬ (𝑥𝑦) = 𝐽)
6059neqned 2939 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → (𝑥𝑦) ≠ 𝐽)
6118, 60rexlimddv 3147 . . . . . . . 8 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) ≠ 𝐽)
6261exp32 420 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6362exlimdvv 1934 . . . . . 6 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (∃𝑎𝑏(𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
646, 63biimtrid 242 . . . . 5 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6564impd 410 . . . 4 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
661, 65biimtrid 242 . . 3 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6766ralrimivva 3187 . 2 (𝐽 ∈ PConn → ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6816toptopon 22855 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
6938, 68sylib 218 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ (TopOn‘ 𝐽))
70 dfconn2 23357 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7169, 70syl 17 . 2 (𝐽 ∈ PConn → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7267, 71mpbird 257 1 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  cdif 3923  cun 3924  cin 3925  wss 3926  c0 4308   cuni 4883  wf 6527  cfv 6531  (class class class)co 7405  0cc0 11129  1c1 11130  [,]cicc 13365  Topctop 22831  TopOnctopon 22848  Clsdccld 22954   Cn ccn 23162  Conncconn 23349  IIcii 24819  PConncpconn 35241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fi 9423  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-rest 17436  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-top 22832  df-topon 22849  df-bases 22884  df-cld 22957  df-cn 23165  df-conn 23350  df-ii 24821  df-pconn 35243
This theorem is referenced by:  resconn  35268  iinllyconn  35276  cvmlift2lem10  35334  cvmlift3  35350
  Copyright terms: Public domain W3C validator