Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnconn Structured version   Visualization version   GIF version

Theorem pconnconn 32086
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconnconn (𝐽 ∈ PConn → 𝐽 ∈ Conn)

Proof of Theorem pconnconn
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1082 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅))
2 n0 4230 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ∃𝑎 𝑎𝑥)
3 n0 4230 . . . . . . . 8 (𝑦 ≠ ∅ ↔ ∃𝑏 𝑏𝑦)
42, 3anbi12i 626 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
5 exdistrv 1933 . . . . . . 7 (∃𝑎𝑏(𝑎𝑥𝑏𝑦) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
64, 5bitr4i 279 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ∃𝑎𝑏(𝑎𝑥𝑏𝑦))
7 simpll 763 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝐽 ∈ PConn)
8 simprll 775 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎𝑥)
9 simplrl 773 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
10 elunii 4750 . . . . . . . . . . 11 ((𝑎𝑥𝑥𝐽) → 𝑎 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎 𝐽)
12 simprlr 776 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏𝑦)
13 simplrr 774 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑦𝐽)
14 elunii 4750 . . . . . . . . . . 11 ((𝑏𝑦𝑦𝐽) → 𝑏 𝐽)
1512, 13, 14syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏 𝐽)
16 eqid 2795 . . . . . . . . . . 11 𝐽 = 𝐽
1716pconncn 32079 . . . . . . . . . 10 ((𝐽 ∈ PConn ∧ 𝑎 𝐽𝑏 𝐽) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
187, 11, 15, 17syl3anc 1364 . . . . . . . . 9 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
19 simplrr 774 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = ∅)
20 simplrr 774 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘1) = 𝑏)
2120adantl 482 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) = 𝑏)
22 iiuni 23172 . . . . . . . . . . . . . . . . 17 (0[,]1) = II
23 iiconn 23178 . . . . . . . . . . . . . . . . . 18 II ∈ Conn
2423a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → II ∈ Conn)
25 simprll 775 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓 ∈ (II Cn 𝐽))
269adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥𝐽)
27 uncom 4050 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥) = (𝑥𝑦)
28 simprr 769 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = 𝐽)
2927, 28syl5eq 2843 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = 𝐽)
3013adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦𝐽)
31 elssuni 4774 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐽𝑦 𝐽)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦 𝐽)
33 incom 4099 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥) = (𝑥𝑦)
3433, 19syl5eq 2843 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = ∅)
35 uneqdifeq 4352 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝐽 ∧ (𝑦𝑥) = ∅) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3632, 34, 35syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3729, 36mpbid 233 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) = 𝑥)
38 pconntop 32080 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ PConn → 𝐽 ∈ Top)
3938ad3antrrr 726 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝐽 ∈ Top)
4016opncld 21325 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4139, 30, 40syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4237, 41eqeltrrd 2884 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
43 0elunit 12705 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,]1)
4443a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 0 ∈ (0[,]1))
45 simplrl 773 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘0) = 𝑎)
4645adantl 482 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) = 𝑎)
478adantr 481 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑎𝑥)
4846, 47eqeltrd 2883 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) ∈ 𝑥)
4922, 24, 25, 26, 42, 44, 48conncn 21718 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓:(0[,]1)⟶𝑥)
50 1elunit 12706 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
51 ffvelrn 6714 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑥 ∧ 1 ∈ (0[,]1)) → (𝑓‘1) ∈ 𝑥)
5249, 50, 51sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) ∈ 𝑥)
5321, 52eqeltrrd 2884 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑥)
5412adantr 481 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑦)
55 inelcm 4328 . . . . . . . . . . . . . 14 ((𝑏𝑥𝑏𝑦) → (𝑥𝑦) ≠ ∅)
5653, 54, 55syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) ≠ ∅)
5719, 56pm2.21ddne 3069 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ¬ (𝑥𝑦) = 𝐽)
5857expr 457 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ((𝑥𝑦) = 𝐽 → ¬ (𝑥𝑦) = 𝐽))
5958pm2.01d 191 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ¬ (𝑥𝑦) = 𝐽)
6059neqned 2991 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → (𝑥𝑦) ≠ 𝐽)
6118, 60rexlimddv 3254 . . . . . . . 8 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) ≠ 𝐽)
6261exp32 421 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6362exlimdvv 1912 . . . . . 6 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (∃𝑎𝑏(𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
646, 63syl5bi 243 . . . . 5 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6564impd 411 . . . 4 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
661, 65syl5bi 243 . . 3 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6766ralrimivva 3158 . 2 (𝐽 ∈ PConn → ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6816toptopon 21209 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
6938, 68sylib 219 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ (TopOn‘ 𝐽))
70 dfconn2 21711 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7169, 70syl 17 . 2 (𝐽 ∈ PConn → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7267, 71mpbird 258 1 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1080   = wceq 1522  wex 1761  wcel 2081  wne 2984  wral 3105  wrex 3106  cdif 3856  cun 3857  cin 3858  wss 3859  c0 4211   cuni 4745  wf 6221  cfv 6225  (class class class)co 7016  0cc0 10383  1c1 10384  [,]cicc 12591  Topctop 21185  TopOnctopon 21202  Clsdccld 21308   Cn ccn 21516  Conncconn 21703  IIcii 23166  PConncpconn 32074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-oadd 7957  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fi 8721  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-rp 12240  df-xneg 12357  df-xadd 12358  df-xmul 12359  df-ioo 12592  df-ico 12594  df-icc 12595  df-seq 13220  df-exp 13280  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-rest 16525  df-topgen 16546  df-psmet 20219  df-xmet 20220  df-met 20221  df-bl 20222  df-mopn 20223  df-top 21186  df-topon 21203  df-bases 21238  df-cld 21311  df-cn 21519  df-conn 21704  df-ii 23168  df-pconn 32076
This theorem is referenced by:  resconn  32101  iinllyconn  32109  cvmlift2lem10  32167  cvmlift3  32183
  Copyright terms: Public domain W3C validator