Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnconn Structured version   Visualization version   GIF version

Theorem pconnconn 35236
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconnconn (𝐽 ∈ PConn → 𝐽 ∈ Conn)

Proof of Theorem pconnconn
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1089 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅))
2 n0 4353 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ∃𝑎 𝑎𝑥)
3 n0 4353 . . . . . . . 8 (𝑦 ≠ ∅ ↔ ∃𝑏 𝑏𝑦)
42, 3anbi12i 628 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
5 exdistrv 1955 . . . . . . 7 (∃𝑎𝑏(𝑎𝑥𝑏𝑦) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
64, 5bitr4i 278 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ∃𝑎𝑏(𝑎𝑥𝑏𝑦))
7 simpll 767 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝐽 ∈ PConn)
8 simprll 779 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎𝑥)
9 simplrl 777 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
10 elunii 4912 . . . . . . . . . . 11 ((𝑎𝑥𝑥𝐽) → 𝑎 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎 𝐽)
12 simprlr 780 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏𝑦)
13 simplrr 778 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑦𝐽)
14 elunii 4912 . . . . . . . . . . 11 ((𝑏𝑦𝑦𝐽) → 𝑏 𝐽)
1512, 13, 14syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏 𝐽)
16 eqid 2737 . . . . . . . . . . 11 𝐽 = 𝐽
1716pconncn 35229 . . . . . . . . . 10 ((𝐽 ∈ PConn ∧ 𝑎 𝐽𝑏 𝐽) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
187, 11, 15, 17syl3anc 1373 . . . . . . . . 9 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
19 simplrr 778 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = ∅)
20 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘1) = 𝑏)
2120adantl 481 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) = 𝑏)
22 iiuni 24907 . . . . . . . . . . . . . . . . 17 (0[,]1) = II
23 iiconn 24913 . . . . . . . . . . . . . . . . . 18 II ∈ Conn
2423a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → II ∈ Conn)
25 simprll 779 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓 ∈ (II Cn 𝐽))
269adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥𝐽)
27 uncom 4158 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥) = (𝑥𝑦)
28 simprr 773 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = 𝐽)
2927, 28eqtrid 2789 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = 𝐽)
3013adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦𝐽)
31 elssuni 4937 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐽𝑦 𝐽)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦 𝐽)
33 incom 4209 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥) = (𝑥𝑦)
3433, 19eqtrid 2789 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = ∅)
35 uneqdifeq 4493 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝐽 ∧ (𝑦𝑥) = ∅) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3632, 34, 35syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3729, 36mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) = 𝑥)
38 pconntop 35230 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ PConn → 𝐽 ∈ Top)
3938ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝐽 ∈ Top)
4016opncld 23041 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4139, 30, 40syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4237, 41eqeltrrd 2842 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
43 0elunit 13509 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,]1)
4443a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 0 ∈ (0[,]1))
45 simplrl 777 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘0) = 𝑎)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) = 𝑎)
478adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑎𝑥)
4846, 47eqeltrd 2841 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) ∈ 𝑥)
4922, 24, 25, 26, 42, 44, 48conncn 23434 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓:(0[,]1)⟶𝑥)
50 1elunit 13510 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
51 ffvelcdm 7101 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑥 ∧ 1 ∈ (0[,]1)) → (𝑓‘1) ∈ 𝑥)
5249, 50, 51sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) ∈ 𝑥)
5321, 52eqeltrrd 2842 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑥)
5412adantr 480 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑦)
55 inelcm 4465 . . . . . . . . . . . . . 14 ((𝑏𝑥𝑏𝑦) → (𝑥𝑦) ≠ ∅)
5653, 54, 55syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) ≠ ∅)
5719, 56pm2.21ddne 3026 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ¬ (𝑥𝑦) = 𝐽)
5857expr 456 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ((𝑥𝑦) = 𝐽 → ¬ (𝑥𝑦) = 𝐽))
5958pm2.01d 190 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ¬ (𝑥𝑦) = 𝐽)
6059neqned 2947 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → (𝑥𝑦) ≠ 𝐽)
6118, 60rexlimddv 3161 . . . . . . . 8 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) ≠ 𝐽)
6261exp32 420 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6362exlimdvv 1934 . . . . . 6 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (∃𝑎𝑏(𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
646, 63biimtrid 242 . . . . 5 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6564impd 410 . . . 4 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
661, 65biimtrid 242 . . 3 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6766ralrimivva 3202 . 2 (𝐽 ∈ PConn → ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6816toptopon 22923 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
6938, 68sylib 218 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ (TopOn‘ 𝐽))
70 dfconn2 23427 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7169, 70syl 17 . 2 (𝐽 ∈ PConn → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7267, 71mpbird 257 1 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333   cuni 4907  wf 6557  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  [,]cicc 13390  Topctop 22899  TopOnctopon 22916  Clsdccld 23024   Cn ccn 23232  Conncconn 23419  IIcii 24901  PConncpconn 35224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cld 23027  df-cn 23235  df-conn 23420  df-ii 24903  df-pconn 35226
This theorem is referenced by:  resconn  35251  iinllyconn  35259  cvmlift2lem10  35317  cvmlift3  35333
  Copyright terms: Public domain W3C validator