Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pconnconn Structured version   Visualization version   GIF version

Theorem pconnconn 35215
Description: A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.)
Assertion
Ref Expression
pconnconn (𝐽 ∈ PConn → 𝐽 ∈ Conn)

Proof of Theorem pconnconn
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-3an 1088 . . . 4 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) ↔ ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅))
2 n0 4358 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ∃𝑎 𝑎𝑥)
3 n0 4358 . . . . . . . 8 (𝑦 ≠ ∅ ↔ ∃𝑏 𝑏𝑦)
42, 3anbi12i 628 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
5 exdistrv 1952 . . . . . . 7 (∃𝑎𝑏(𝑎𝑥𝑏𝑦) ↔ (∃𝑎 𝑎𝑥 ∧ ∃𝑏 𝑏𝑦))
64, 5bitr4i 278 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ↔ ∃𝑎𝑏(𝑎𝑥𝑏𝑦))
7 simpll 767 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝐽 ∈ PConn)
8 simprll 779 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎𝑥)
9 simplrl 777 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑥𝐽)
10 elunii 4916 . . . . . . . . . . 11 ((𝑎𝑥𝑥𝐽) → 𝑎 𝐽)
118, 9, 10syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑎 𝐽)
12 simprlr 780 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏𝑦)
13 simplrr 778 . . . . . . . . . . 11 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑦𝐽)
14 elunii 4916 . . . . . . . . . . 11 ((𝑏𝑦𝑦𝐽) → 𝑏 𝐽)
1512, 13, 14syl2anc 584 . . . . . . . . . 10 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → 𝑏 𝐽)
16 eqid 2734 . . . . . . . . . . 11 𝐽 = 𝐽
1716pconncn 35208 . . . . . . . . . 10 ((𝐽 ∈ PConn ∧ 𝑎 𝐽𝑏 𝐽) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
187, 11, 15, 17syl3anc 1370 . . . . . . . . 9 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))
19 simplrr 778 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = ∅)
20 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘1) = 𝑏)
2120adantl 481 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) = 𝑏)
22 iiuni 24920 . . . . . . . . . . . . . . . . 17 (0[,]1) = II
23 iiconn 24926 . . . . . . . . . . . . . . . . . 18 II ∈ Conn
2423a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → II ∈ Conn)
25 simprll 779 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓 ∈ (II Cn 𝐽))
269adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥𝐽)
27 uncom 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑦𝑥) = (𝑥𝑦)
28 simprr 773 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) = 𝐽)
2927, 28eqtrid 2786 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = 𝐽)
3013adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦𝐽)
31 elssuni 4941 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝐽𝑦 𝐽)
3230, 31syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑦 𝐽)
33 incom 4216 . . . . . . . . . . . . . . . . . . . . 21 (𝑦𝑥) = (𝑥𝑦)
3433, 19eqtrid 2786 . . . . . . . . . . . . . . . . . . . 20 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑦𝑥) = ∅)
35 uneqdifeq 4498 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 𝐽 ∧ (𝑦𝑥) = ∅) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3632, 34, 35syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ((𝑦𝑥) = 𝐽 ↔ ( 𝐽𝑦) = 𝑥))
3729, 36mpbid 232 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) = 𝑥)
38 pconntop 35209 . . . . . . . . . . . . . . . . . . . 20 (𝐽 ∈ PConn → 𝐽 ∈ Top)
3938ad3antrrr 730 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝐽 ∈ Top)
4016opncld 23056 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ Top ∧ 𝑦𝐽) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4139, 30, 40syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ( 𝐽𝑦) ∈ (Clsd‘𝐽))
4237, 41eqeltrrd 2839 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑥 ∈ (Clsd‘𝐽))
43 0elunit 13505 . . . . . . . . . . . . . . . . . 18 0 ∈ (0[,]1)
4443a1i 11 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 0 ∈ (0[,]1))
45 simplrl 777 . . . . . . . . . . . . . . . . . . 19 (((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽) → (𝑓‘0) = 𝑎)
4645adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) = 𝑎)
478adantr 480 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑎𝑥)
4846, 47eqeltrd 2838 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘0) ∈ 𝑥)
4922, 24, 25, 26, 42, 44, 48conncn 23449 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑓:(0[,]1)⟶𝑥)
50 1elunit 13506 . . . . . . . . . . . . . . . 16 1 ∈ (0[,]1)
51 ffvelcdm 7100 . . . . . . . . . . . . . . . 16 ((𝑓:(0[,]1)⟶𝑥 ∧ 1 ∈ (0[,]1)) → (𝑓‘1) ∈ 𝑥)
5249, 50, 51sylancl 586 . . . . . . . . . . . . . . 15 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑓‘1) ∈ 𝑥)
5321, 52eqeltrrd 2839 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑥)
5412adantr 480 . . . . . . . . . . . . . 14 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → 𝑏𝑦)
55 inelcm 4470 . . . . . . . . . . . . . 14 ((𝑏𝑥𝑏𝑦) → (𝑥𝑦) ≠ ∅)
5653, 54, 55syl2anc 584 . . . . . . . . . . . . 13 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → (𝑥𝑦) ≠ ∅)
5719, 56pm2.21ddne 3023 . . . . . . . . . . . 12 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ ((𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏)) ∧ (𝑥𝑦) = 𝐽)) → ¬ (𝑥𝑦) = 𝐽)
5857expr 456 . . . . . . . . . . 11 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ((𝑥𝑦) = 𝐽 → ¬ (𝑥𝑦) = 𝐽))
5958pm2.01d 190 . . . . . . . . . 10 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → ¬ (𝑥𝑦) = 𝐽)
6059neqned 2944 . . . . . . . . 9 ((((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) ∧ (𝑓 ∈ (II Cn 𝐽) ∧ ((𝑓‘0) = 𝑎 ∧ (𝑓‘1) = 𝑏))) → (𝑥𝑦) ≠ 𝐽)
6118, 60rexlimddv 3158 . . . . . . . 8 (((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) ∧ ((𝑎𝑥𝑏𝑦) ∧ (𝑥𝑦) = ∅)) → (𝑥𝑦) ≠ 𝐽)
6261exp32 420 . . . . . . 7 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6362exlimdvv 1931 . . . . . 6 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (∃𝑎𝑏(𝑎𝑥𝑏𝑦) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
646, 63biimtrid 242 . . . . 5 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) → ((𝑥𝑦) = ∅ → (𝑥𝑦) ≠ 𝐽)))
6564impd 410 . . . 4 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → (((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅) ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
661, 65biimtrid 242 . . 3 ((𝐽 ∈ PConn ∧ (𝑥𝐽𝑦𝐽)) → ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6766ralrimivva 3199 . 2 (𝐽 ∈ PConn → ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽))
6816toptopon 22938 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
6938, 68sylib 218 . . 3 (𝐽 ∈ PConn → 𝐽 ∈ (TopOn‘ 𝐽))
70 dfconn2 23442 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7169, 70syl 17 . 2 (𝐽 ∈ PConn → (𝐽 ∈ Conn ↔ ∀𝑥𝐽𝑦𝐽 ((𝑥 ≠ ∅ ∧ 𝑦 ≠ ∅ ∧ (𝑥𝑦) = ∅) → (𝑥𝑦) ≠ 𝐽)))
7267, 71mpbird 257 1 (𝐽 ∈ PConn → 𝐽 ∈ Conn)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  wrex 3067  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338   cuni 4911  wf 6558  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153  [,]cicc 13386  Topctop 22914  TopOnctopon 22931  Clsdccld 23039   Cn ccn 23247  Conncconn 23434  IIcii 24914  PConncpconn 35203
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fi 9448  df-sup 9479  df-inf 9480  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ico 13389  df-icc 13390  df-seq 14039  df-exp 14099  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-rest 17468  df-topgen 17489  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-top 22915  df-topon 22932  df-bases 22968  df-cld 23042  df-cn 23250  df-conn 23435  df-ii 24916  df-pconn 35205
This theorem is referenced by:  resconn  35230  iinllyconn  35238  cvmlift2lem10  35296  cvmlift3  35312
  Copyright terms: Public domain W3C validator