Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > cvnref | Structured version Visualization version GIF version |
Description: The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnref | ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnsym 30553 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) | |
2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) |
3 | 2 | pm2.01d 189 | 1 ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2108 class class class wbr 5070 Cℋ cch 29192 ⋖ℋ ccv 29227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cv 30542 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |