| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnref | Structured version Visualization version GIF version | ||
| Description: The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnref | ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvnsym 32225 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) | |
| 2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2109 class class class wbr 5109 Cℋ cch 30864 ⋖ℋ ccv 30899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-cv 32214 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |