| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvnref | Structured version Visualization version GIF version | ||
| Description: The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvnref | ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvnsym 32256 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) | |
| 2 | 1 | anidms 566 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) |
| 3 | 2 | pm2.01d 190 | 1 ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 class class class wbr 5125 Cℋ cch 30895 ⋖ℋ ccv 30930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-cv 32245 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |