![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvnref | Structured version Visualization version GIF version |
Description: The covers relation is not reflexive. (Contributed by NM, 26-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvnref | ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvnsym 31470 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) | |
2 | 1 | anidms 567 | . 2 ⊢ (𝐴 ∈ Cℋ → (𝐴 ⋖ℋ 𝐴 → ¬ 𝐴 ⋖ℋ 𝐴)) |
3 | 2 | pm2.01d 189 | 1 ⊢ (𝐴 ∈ Cℋ → ¬ 𝐴 ⋖ℋ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 class class class wbr 5142 Cℋ cch 30109 ⋖ℋ ccv 30144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pr 5421 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-br 5143 df-opab 5205 df-cv 31459 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |