| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alexsub | Structured version Visualization version GIF version | ||
| Description: The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 23986 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| alexsub.1 | ⊢ (𝜑 → 𝑋 ∈ UFL) |
| alexsub.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐵) |
| alexsub.3 | ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) |
| alexsub.4 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
| Ref | Expression |
|---|---|
| alexsub | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsub.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ UFL) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 ∈ UFL) |
| 3 | alexsub.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 = ∪ 𝐵) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 = ∪ 𝐵) |
| 5 | alexsub.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) | |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝐽 = (topGen‘(fi‘𝐵))) |
| 7 | alexsub.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) | |
| 8 | 7 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
| 9 | simprl 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑓 ∈ (UFil‘𝑋)) | |
| 10 | simprr 772 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → (𝐽 fLim 𝑓) = ∅) | |
| 11 | 2, 4, 6, 8, 9, 10 | alexsublem 23979 | . . . . . . 7 ⊢ ¬ (𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) |
| 12 | 11 | pm2.21i 119 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → ¬ (𝐽 fLim 𝑓) = ∅) |
| 13 | 12 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ((𝐽 fLim 𝑓) = ∅ → ¬ (𝐽 fLim 𝑓) = ∅)) |
| 14 | 13 | pm2.01d 190 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ¬ (𝐽 fLim 𝑓) = ∅) |
| 15 | 14 | neqned 2936 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝐽 fLim 𝑓) ≠ ∅) |
| 16 | 15 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅) |
| 17 | fibas 22912 | . . . . . 6 ⊢ (fi‘𝐵) ∈ TopBases | |
| 18 | tgtopon 22906 | . . . . . 6 ⊢ ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵)) |
| 20 | 5, 19 | eqeltrdi 2841 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ (fi‘𝐵))) |
| 21 | 1 | elexd 3461 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ V) |
| 22 | 3, 21 | eqeltrrd 2834 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
| 23 | uniexb 7706 | . . . . . . . 8 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 24 | 22, 23 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
| 25 | fiuni 9323 | . . . . . . 7 ⊢ (𝐵 ∈ V → ∪ 𝐵 = ∪ (fi‘𝐵)) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∪ 𝐵 = ∪ (fi‘𝐵)) |
| 27 | 3, 26 | eqtrd 2768 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ (fi‘𝐵)) |
| 28 | 27 | fveq2d 6835 | . . . 4 ⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ (fi‘𝐵))) |
| 29 | 20, 28 | eleqtrrd 2836 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 30 | ufilcmp 23967 | . . 3 ⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) | |
| 31 | 1, 29, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) |
| 32 | 16, 31 | mpbird 257 | 1 ⊢ (𝜑 → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 Vcvv 3437 ∩ cin 3897 ⊆ wss 3898 ∅c0 4282 𝒫 cpw 4551 ∪ cuni 4860 ‘cfv 6489 (class class class)co 7355 Fincfn 8879 ficfi 9305 topGenctg 17348 TopOnctopon 22845 TopBasesctb 22880 Compccmp 23321 UFilcufil 23834 UFLcufl 23835 fLim cflim 23869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-1o 8394 df-2o 8395 df-en 8880 df-dom 8881 df-fin 8883 df-fi 9306 df-topgen 17354 df-fbas 21297 df-fg 21298 df-top 22829 df-topon 22846 df-bases 22881 df-cld 22954 df-ntr 22955 df-cls 22956 df-nei 23033 df-cmp 23322 df-fil 23781 df-ufil 23836 df-ufl 23837 df-flim 23874 df-fcls 23876 |
| This theorem is referenced by: alexsubb 23981 ptcmplem5 23991 |
| Copyright terms: Public domain | W3C validator |