| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alexsub | Structured version Visualization version GIF version | ||
| Description: The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 23954 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| alexsub.1 | ⊢ (𝜑 → 𝑋 ∈ UFL) |
| alexsub.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐵) |
| alexsub.3 | ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) |
| alexsub.4 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
| Ref | Expression |
|---|---|
| alexsub | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexsub.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ UFL) | |
| 2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 ∈ UFL) |
| 3 | alexsub.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 = ∪ 𝐵) | |
| 4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 = ∪ 𝐵) |
| 5 | alexsub.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) | |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝐽 = (topGen‘(fi‘𝐵))) |
| 7 | alexsub.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) | |
| 8 | 7 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
| 9 | simprl 770 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑓 ∈ (UFil‘𝑋)) | |
| 10 | simprr 772 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → (𝐽 fLim 𝑓) = ∅) | |
| 11 | 2, 4, 6, 8, 9, 10 | alexsublem 23947 | . . . . . . 7 ⊢ ¬ (𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) |
| 12 | 11 | pm2.21i 119 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → ¬ (𝐽 fLim 𝑓) = ∅) |
| 13 | 12 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ((𝐽 fLim 𝑓) = ∅ → ¬ (𝐽 fLim 𝑓) = ∅)) |
| 14 | 13 | pm2.01d 190 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ¬ (𝐽 fLim 𝑓) = ∅) |
| 15 | 14 | neqned 2932 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝐽 fLim 𝑓) ≠ ∅) |
| 16 | 15 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅) |
| 17 | fibas 22880 | . . . . . 6 ⊢ (fi‘𝐵) ∈ TopBases | |
| 18 | tgtopon 22874 | . . . . . 6 ⊢ ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵))) | |
| 19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵)) |
| 20 | 5, 19 | eqeltrdi 2836 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ (fi‘𝐵))) |
| 21 | 1 | elexd 3462 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ V) |
| 22 | 3, 21 | eqeltrrd 2829 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
| 23 | uniexb 7704 | . . . . . . . 8 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
| 24 | 22, 23 | sylibr 234 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
| 25 | fiuni 9337 | . . . . . . 7 ⊢ (𝐵 ∈ V → ∪ 𝐵 = ∪ (fi‘𝐵)) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∪ 𝐵 = ∪ (fi‘𝐵)) |
| 27 | 3, 26 | eqtrd 2764 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ (fi‘𝐵)) |
| 28 | 27 | fveq2d 6830 | . . . 4 ⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ (fi‘𝐵))) |
| 29 | 20, 28 | eleqtrrd 2831 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 30 | ufilcmp 23935 | . . 3 ⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) | |
| 31 | 1, 29, 30 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) |
| 32 | 16, 31 | mpbird 257 | 1 ⊢ (𝜑 → 𝐽 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 𝒫 cpw 4553 ∪ cuni 4861 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 ficfi 9319 topGenctg 17359 TopOnctopon 22813 TopBasesctb 22848 Compccmp 23289 UFilcufil 23802 UFLcufl 23803 fLim cflim 23837 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-1o 8395 df-2o 8396 df-en 8880 df-dom 8881 df-fin 8883 df-fi 9320 df-topgen 17365 df-fbas 21276 df-fg 21277 df-top 22797 df-topon 22814 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-cmp 23290 df-fil 23749 df-ufil 23804 df-ufl 23805 df-flim 23842 df-fcls 23844 |
| This theorem is referenced by: alexsubb 23949 ptcmplem5 23959 |
| Copyright terms: Public domain | W3C validator |