MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alexsub Structured version   Visualization version   GIF version

Theorem alexsub 23196
Description: The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 23202 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.)
Hypotheses
Ref Expression
alexsub.1 (𝜑𝑋 ∈ UFL)
alexsub.2 (𝜑𝑋 = 𝐵)
alexsub.3 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
alexsub.4 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
Assertion
Ref Expression
alexsub (𝜑𝐽 ∈ Comp)
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐽,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦

Proof of Theorem alexsub
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 alexsub.1 . . . . . . . . 9 (𝜑𝑋 ∈ UFL)
21adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 ∈ UFL)
3 alexsub.2 . . . . . . . . 9 (𝜑𝑋 = 𝐵)
43adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 = 𝐵)
5 alexsub.3 . . . . . . . . 9 (𝜑𝐽 = (topGen‘(fi‘𝐵)))
65adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝐽 = (topGen‘(fi‘𝐵)))
7 alexsub.4 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
87adantlr 712 . . . . . . . 8 (((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) ∧ (𝑥𝐵𝑋 = 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = 𝑦)
9 simprl 768 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑓 ∈ (UFil‘𝑋))
10 simprr 770 . . . . . . . 8 ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → (𝐽 fLim 𝑓) = ∅)
112, 4, 6, 8, 9, 10alexsublem 23195 . . . . . . 7 ¬ (𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅))
1211pm2.21i 119 . . . . . 6 ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → ¬ (𝐽 fLim 𝑓) = ∅)
1312expr 457 . . . . 5 ((𝜑𝑓 ∈ (UFil‘𝑋)) → ((𝐽 fLim 𝑓) = ∅ → ¬ (𝐽 fLim 𝑓) = ∅))
1413pm2.01d 189 . . . 4 ((𝜑𝑓 ∈ (UFil‘𝑋)) → ¬ (𝐽 fLim 𝑓) = ∅)
1514neqned 2950 . . 3 ((𝜑𝑓 ∈ (UFil‘𝑋)) → (𝐽 fLim 𝑓) ≠ ∅)
1615ralrimiva 3103 . 2 (𝜑 → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)
17 fibas 22127 . . . . . 6 (fi‘𝐵) ∈ TopBases
18 tgtopon 22121 . . . . . 6 ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵)))
1917, 18ax-mp 5 . . . . 5 (topGen‘(fi‘𝐵)) ∈ (TopOn‘ (fi‘𝐵))
205, 19eqeltrdi 2847 . . . 4 (𝜑𝐽 ∈ (TopOn‘ (fi‘𝐵)))
211elexd 3452 . . . . . . . . 9 (𝜑𝑋 ∈ V)
223, 21eqeltrrd 2840 . . . . . . . 8 (𝜑 𝐵 ∈ V)
23 uniexb 7614 . . . . . . . 8 (𝐵 ∈ V ↔ 𝐵 ∈ V)
2422, 23sylibr 233 . . . . . . 7 (𝜑𝐵 ∈ V)
25 fiuni 9187 . . . . . . 7 (𝐵 ∈ V → 𝐵 = (fi‘𝐵))
2624, 25syl 17 . . . . . 6 (𝜑 𝐵 = (fi‘𝐵))
273, 26eqtrd 2778 . . . . 5 (𝜑𝑋 = (fi‘𝐵))
2827fveq2d 6778 . . . 4 (𝜑 → (TopOn‘𝑋) = (TopOn‘ (fi‘𝐵)))
2920, 28eleqtrrd 2842 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
30 ufilcmp 23183 . . 3 ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅))
311, 29, 30syl2anc 584 . 2 (𝜑 → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅))
3216, 31mpbird 256 1 (𝜑𝐽 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533   cuni 4839  cfv 6433  (class class class)co 7275  Fincfn 8733  ficfi 9169  topGenctg 17148  TopOnctopon 22059  TopBasesctb 22095  Compccmp 22537  UFilcufil 23050  UFLcufl 23051   fLim cflim 23085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-fin 8737  df-fi 9170  df-topgen 17154  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-cmp 22538  df-fil 22997  df-ufil 23052  df-ufl 23053  df-flim 23090  df-fcls 23092
This theorem is referenced by:  alexsubb  23197  ptcmplem5  23207
  Copyright terms: Public domain W3C validator