Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alexsub | Structured version Visualization version GIF version |
Description: The Alexander Subbase Theorem: If 𝐵 is a subbase for the topology 𝐽, and any cover taken from 𝐵 has a finite subcover, then the generated topology is compact. This proof uses the ultrafilter lemma; see alexsubALT 23110 for a proof using Zorn's lemma. (Contributed by Jeff Hankins, 24-Jan-2010.) (Revised by Mario Carneiro, 26-Aug-2015.) |
Ref | Expression |
---|---|
alexsub.1 | ⊢ (𝜑 → 𝑋 ∈ UFL) |
alexsub.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐵) |
alexsub.3 | ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) |
alexsub.4 | ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
Ref | Expression |
---|---|
alexsub | ⊢ (𝜑 → 𝐽 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alexsub.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ UFL) | |
2 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 ∈ UFL) |
3 | alexsub.2 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 = ∪ 𝐵) | |
4 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑋 = ∪ 𝐵) |
5 | alexsub.3 | . . . . . . . . 9 ⊢ (𝜑 → 𝐽 = (topGen‘(fi‘𝐵))) | |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝐽 = (topGen‘(fi‘𝐵))) |
7 | alexsub.4 | . . . . . . . . 9 ⊢ ((𝜑 ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) | |
8 | 7 | adantlr 711 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) ∧ (𝑥 ⊆ 𝐵 ∧ 𝑋 = ∪ 𝑥)) → ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑋 = ∪ 𝑦) |
9 | simprl 767 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → 𝑓 ∈ (UFil‘𝑋)) | |
10 | simprr 769 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → (𝐽 fLim 𝑓) = ∅) | |
11 | 2, 4, 6, 8, 9, 10 | alexsublem 23103 | . . . . . . 7 ⊢ ¬ (𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) |
12 | 11 | pm2.21i 119 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑓 ∈ (UFil‘𝑋) ∧ (𝐽 fLim 𝑓) = ∅)) → ¬ (𝐽 fLim 𝑓) = ∅) |
13 | 12 | expr 456 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ((𝐽 fLim 𝑓) = ∅ → ¬ (𝐽 fLim 𝑓) = ∅)) |
14 | 13 | pm2.01d 189 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → ¬ (𝐽 fLim 𝑓) = ∅) |
15 | 14 | neqned 2949 | . . 3 ⊢ ((𝜑 ∧ 𝑓 ∈ (UFil‘𝑋)) → (𝐽 fLim 𝑓) ≠ ∅) |
16 | 15 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅) |
17 | fibas 22035 | . . . . . 6 ⊢ (fi‘𝐵) ∈ TopBases | |
18 | tgtopon 22029 | . . . . . 6 ⊢ ((fi‘𝐵) ∈ TopBases → (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵))) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ (topGen‘(fi‘𝐵)) ∈ (TopOn‘∪ (fi‘𝐵)) |
20 | 5, 19 | eqeltrdi 2847 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ (fi‘𝐵))) |
21 | 1 | elexd 3442 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ V) |
22 | 3, 21 | eqeltrrd 2840 | . . . . . . . 8 ⊢ (𝜑 → ∪ 𝐵 ∈ V) |
23 | uniexb 7592 | . . . . . . . 8 ⊢ (𝐵 ∈ V ↔ ∪ 𝐵 ∈ V) | |
24 | 22, 23 | sylibr 233 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ V) |
25 | fiuni 9117 | . . . . . . 7 ⊢ (𝐵 ∈ V → ∪ 𝐵 = ∪ (fi‘𝐵)) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝜑 → ∪ 𝐵 = ∪ (fi‘𝐵)) |
27 | 3, 26 | eqtrd 2778 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ (fi‘𝐵)) |
28 | 27 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (TopOn‘𝑋) = (TopOn‘∪ (fi‘𝐵))) |
29 | 20, 28 | eleqtrrd 2842 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
30 | ufilcmp 23091 | . . 3 ⊢ ((𝑋 ∈ UFL ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) | |
31 | 1, 29, 30 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐽 ∈ Comp ↔ ∀𝑓 ∈ (UFil‘𝑋)(𝐽 fLim 𝑓) ≠ ∅)) |
32 | 16, 31 | mpbird 256 | 1 ⊢ (𝜑 → 𝐽 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 ∪ cuni 4836 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ficfi 9099 topGenctg 17065 TopOnctopon 21967 TopBasesctb 22003 Compccmp 22445 UFilcufil 22958 UFLcufl 22959 fLim cflim 22993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-fin 8695 df-fi 9100 df-topgen 17071 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-cmp 22446 df-fil 22905 df-ufil 22960 df-ufl 22961 df-flim 22998 df-fcls 23000 |
This theorem is referenced by: alexsubb 23105 ptcmplem5 23115 |
Copyright terms: Public domain | W3C validator |