MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cyclusnfrgr Structured version   Visualization version   GIF version

Theorem 4cyclusnfrgr 30273
Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
4cyclusnfrgr.v 𝑉 = (Vtx‘𝐺)
4cyclusnfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
4cyclusnfrgr ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))

Proof of Theorem 4cyclusnfrgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2 simprr 772 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))
3 simpl3 1194 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (𝐵𝑉𝐷𝑉𝐵𝐷))
4 4cycl2vnunb 30271 . . . . . 6 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
51, 2, 3, 4syl3anc 1373 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
6 4cyclusnfrgr.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
7 4cyclusnfrgr.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
86, 7frcond1 30247 . . . . . . . . 9 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸))
9 pm2.24 124 . . . . . . . . 9 (∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ))
108, 9syl6com 37 . . . . . . . 8 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (𝐺 ∈ FriendGraph → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph )))
11103ad2ant2 1134 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → (𝐺 ∈ FriendGraph → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph )))
1211com23 86 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph )))
1312adantr 480 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph )))
145, 13mpd 15 . . . 4 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ))
1514pm2.01d 190 . . 3 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ¬ 𝐺 ∈ FriendGraph )
16 df-nel 3037 . . 3 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1715, 16sylibr 234 . 2 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → 𝐺 ∉ FriendGraph )
1817ex 412 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wnel 3036  ∃!wreu 3357  wss 3926  {cpr 4603  cfv 6531  Vtxcvtx 28975  Edgcedg 29026  USGraphcusgr 29128   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-nul 5276
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-iota 6484  df-fv 6539  df-frgr 30240
This theorem is referenced by:  frgrnbnb  30274  frgrwopreg  30304
  Copyright terms: Public domain W3C validator