MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4cyclusnfrgr Structured version   Visualization version   GIF version

Theorem 4cyclusnfrgr 28071
Description: A graph with a 4-cycle is not a friendhip graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 2-Apr-2021.)
Hypotheses
Ref Expression
4cyclusnfrgr.v 𝑉 = (Vtx‘𝐺)
4cyclusnfrgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
4cyclusnfrgr ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))

Proof of Theorem 4cyclusnfrgr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simprl 769 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸))
2 simprr 771 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))
3 simpl3 1189 . . . . . 6 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (𝐵𝑉𝐷𝑉𝐵𝐷))
4 4cycl2vnunb 28069 . . . . . 6 ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
51, 2, 3, 4syl3anc 1367 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸)
6 4cyclusnfrgr.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
7 4cyclusnfrgr.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
86, 7frcond1 28045 . . . . . . . . 9 (𝐺 ∈ FriendGraph → ((𝐴𝑉𝐶𝑉𝐴𝐶) → ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸))
9 pm2.24 124 . . . . . . . . 9 (∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph ))
108, 9syl6com 37 . . . . . . . 8 ((𝐴𝑉𝐶𝑉𝐴𝐶) → (𝐺 ∈ FriendGraph → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph )))
11103ad2ant2 1130 . . . . . . 7 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → (𝐺 ∈ FriendGraph → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → ¬ 𝐺 ∈ FriendGraph )))
1211com23 86 . . . . . 6 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph )))
1312adantr 483 . . . . 5 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (¬ ∃!𝑥𝑉 {{𝐴, 𝑥}, {𝑥, 𝐶}} ⊆ 𝐸 → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph )))
145, 13mpd 15 . . . 4 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → (𝐺 ∈ FriendGraph → ¬ 𝐺 ∈ FriendGraph ))
1514pm2.01d 192 . . 3 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → ¬ 𝐺 ∈ FriendGraph )
16 df-nel 3124 . . 3 (𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
1715, 16sylibr 236 . 2 (((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) ∧ (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸))) → 𝐺 ∉ FriendGraph )
1817ex 415 1 ((𝐺 ∈ USGraph ∧ (𝐴𝑉𝐶𝑉𝐴𝐶) ∧ (𝐵𝑉𝐷𝑉𝐵𝐷)) → ((({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ∧ ({𝐶, 𝐷} ∈ 𝐸 ∧ {𝐷, 𝐴} ∈ 𝐸)) → 𝐺 ∉ FriendGraph ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wnel 3123  ∃!wreu 3140  wss 3936  {cpr 4569  cfv 6355  Vtxcvtx 26781  Edgcedg 26832  USGraphcusgr 26934   FriendGraph cfrgr 28037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-nul 5210
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-iota 6314  df-fv 6363  df-frgr 28038
This theorem is referenced by:  frgrnbnb  28072  frgrwopreg  28102
  Copyright terms: Public domain W3C validator