MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Structured version   Visualization version   GIF version

Theorem rankcf 10660
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 𝐴 form a cofinal map into (rank‘𝐴). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf ¬ 𝐴 ≺ (cf‘(rank‘𝐴))

Proof of Theorem rankcf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 9680 . . 3 (rank‘𝐴) ∈ On
2 onzsl 7771 . . 3 ((rank‘𝐴) ∈ On ↔ ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))))
31, 2mpbi 230 . 2 ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)))
4 sdom0 9017 . . . 4 ¬ 𝐴 ≺ ∅
5 fveq2 6817 . . . . . 6 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = (cf‘∅))
6 cf0 10134 . . . . . 6 (cf‘∅) = ∅
75, 6eqtrdi 2781 . . . . 5 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = ∅)
87breq2d 5101 . . . 4 ((rank‘𝐴) = ∅ → (𝐴 ≺ (cf‘(rank‘𝐴)) ↔ 𝐴 ≺ ∅))
94, 8mtbiri 327 . . 3 ((rank‘𝐴) = ∅ → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
10 fveq2 6817 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) = (cf‘suc 𝑥))
11 cfsuc 10140 . . . . . . 7 (𝑥 ∈ On → (cf‘suc 𝑥) = 1o)
1210, 11sylan9eqr 2787 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) = 1o)
13 nsuceq0 6387 . . . . . . . . 9 suc 𝑥 ≠ ∅
14 neeq1 2988 . . . . . . . . 9 ((rank‘𝐴) = suc 𝑥 → ((rank‘𝐴) ≠ ∅ ↔ suc 𝑥 ≠ ∅))
1513, 14mpbiri 258 . . . . . . . 8 ((rank‘𝐴) = suc 𝑥 → (rank‘𝐴) ≠ ∅)
16 fveq2 6817 . . . . . . . . . . 11 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
17 0elon 6357 . . . . . . . . . . . . 13 ∅ ∈ On
18 r1fnon 9652 . . . . . . . . . . . . . 14 𝑅1 Fn On
1918fndmi 6581 . . . . . . . . . . . . 13 dom 𝑅1 = On
2017, 19eleqtrri 2828 . . . . . . . . . . . 12 ∅ ∈ dom 𝑅1
21 rankonid 9714 . . . . . . . . . . . 12 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
2220, 21mpbi 230 . . . . . . . . . . 11 (rank‘∅) = ∅
2316, 22eqtrdi 2781 . . . . . . . . . 10 (𝐴 = ∅ → (rank‘𝐴) = ∅)
2423necon3i 2958 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → 𝐴 ≠ ∅)
25 rankvaln 9684 . . . . . . . . . . 11 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
2625necon1ai 2953 . . . . . . . . . 10 ((rank‘𝐴) ≠ ∅ → 𝐴 (𝑅1 “ On))
27 breq2 5093 . . . . . . . . . . 11 (𝑦 = 𝐴 → (1o𝑦 ↔ 1o𝐴))
28 neeq1 2988 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
29 0sdom1dom 9125 . . . . . . . . . . . 12 (∅ ≺ 𝑦 ↔ 1o𝑦)
30 vex 3438 . . . . . . . . . . . . 13 𝑦 ∈ V
31300sdom 9016 . . . . . . . . . . . 12 (∅ ≺ 𝑦𝑦 ≠ ∅)
3229, 31bitr3i 277 . . . . . . . . . . 11 (1o𝑦𝑦 ≠ ∅)
3327, 28, 32vtoclbg 3510 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (1o𝐴𝐴 ≠ ∅))
3426, 33syl 17 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → (1o𝐴𝐴 ≠ ∅))
3524, 34mpbird 257 . . . . . . . 8 ((rank‘𝐴) ≠ ∅ → 1o𝐴)
3615, 35syl 17 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → 1o𝐴)
3736adantl 481 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → 1o𝐴)
3812, 37eqbrtrd 5111 . . . . 5 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) ≼ 𝐴)
3938rexlimiva 3123 . . . 4 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) ≼ 𝐴)
40 domnsym 9011 . . . 4 ((cf‘(rank‘𝐴)) ≼ 𝐴 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
4139, 40syl 17 . . 3 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
42 nlim0 6362 . . . . . . . . . . . . . . . . 17 ¬ Lim ∅
43 limeq 6314 . . . . . . . . . . . . . . . . 17 ((rank‘𝐴) = ∅ → (Lim (rank‘𝐴) ↔ Lim ∅))
4442, 43mtbiri 327 . . . . . . . . . . . . . . . 16 ((rank‘𝐴) = ∅ → ¬ Lim (rank‘𝐴))
4525, 44syl 17 . . . . . . . . . . . . . . 15 𝐴 (𝑅1 “ On) → ¬ Lim (rank‘𝐴))
4645con4i 114 . . . . . . . . . . . . . 14 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
47 r1elssi 9690 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
4846, 47syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
4948sselda 3932 . . . . . . . . . . . 12 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
50 ranksnb 9712 . . . . . . . . . . . 12 (𝑥 (𝑅1 “ On) → (rank‘{𝑥}) = suc (rank‘𝑥))
5149, 50syl 17 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) = suc (rank‘𝑥))
52 rankelb 9709 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
5346, 52syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
54 limsuc 7774 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ∈ (rank‘𝐴)))
5553, 54sylibd 239 . . . . . . . . . . . 12 (Lim (rank‘𝐴) → (𝑥𝐴 → suc (rank‘𝑥) ∈ (rank‘𝐴)))
5655imp 406 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → suc (rank‘𝑥) ∈ (rank‘𝐴))
5751, 56eqeltrd 2829 . . . . . . . . . 10 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) ∈ (rank‘𝐴))
58 eleq1a 2824 . . . . . . . . . 10 ((rank‘{𝑥}) ∈ (rank‘𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
5957, 58syl 17 . . . . . . . . 9 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6059rexlimdva 3131 . . . . . . . 8 (Lim (rank‘𝐴) → (∃𝑥𝐴 𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6160abssdv 4017 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴))
62 vsnex 5370 . . . . . . . . . . . . 13 {𝑥} ∈ V
6362dfiun2 4980 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
64 iunid 5007 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = 𝐴
6563, 64eqtr3i 2755 . . . . . . . . . . 11 {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} = 𝐴
6665fveq2i 6820 . . . . . . . . . 10 (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = (rank‘𝐴)
6747sselda 3932 . . . . . . . . . . . . . . 15 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
68 snwf 9694 . . . . . . . . . . . . . . 15 (𝑥 (𝑅1 “ On) → {𝑥} ∈ (𝑅1 “ On))
69 eleq1a 2824 . . . . . . . . . . . . . . 15 ({𝑥} ∈ (𝑅1 “ On) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7067, 68, 693syl 18 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7170rexlimdva 3131 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7271abssdv 4017 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On))
73 abrexexg 7888 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V)
74 eleq1 2817 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On)))
75 sseq1 3958 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
76 vex 3438 . . . . . . . . . . . . . . 15 𝑧 ∈ V
7776r1elss 9691 . . . . . . . . . . . . . 14 (𝑧 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On))
7874, 75, 77vtoclbg 3510 . . . . . . . . . . . . 13 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
7973, 78syl 17 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8072, 79mpbird 257 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On))
81 rankuni2b 9738 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8280, 81syl 17 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8366, 82eqtr3id 2779 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
84 fvex 6830 . . . . . . . . . . 11 (rank‘𝑧) ∈ V
8584dfiun2 4980 . . . . . . . . . 10 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)}
86 fveq2 6817 . . . . . . . . . . . 12 (𝑧 = {𝑥} → (rank‘𝑧) = (rank‘{𝑥}))
8762, 86abrexco 7173 . . . . . . . . . . 11 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8887unieqi 4869 . . . . . . . . . 10 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8985, 88eqtri 2753 . . . . . . . . 9 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9083, 89eqtr2di 2782 . . . . . . . 8 (𝐴 (𝑅1 “ On) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
9146, 90syl 17 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
92 fvex 6830 . . . . . . . 8 (rank‘𝐴) ∈ V
9392cfslb 10149 . . . . . . 7 ((Lim (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
9461, 91, 93mpd3an23 1465 . . . . . 6 (Lim (rank‘𝐴) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
95 2fveq3 6822 . . . . . . . . . 10 (𝑦 = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴)))
96 breq12 5094 . . . . . . . . . 10 ((𝑦 = 𝐴 ∧ (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
9795, 96mpdan 687 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
98 rexeq 3286 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑤 = (rank‘{𝑥}) ↔ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})))
9998abbidv 2796 . . . . . . . . . 10 (𝑦 = 𝐴 → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
100 breq12 5094 . . . . . . . . . 10 (({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ 𝑦 = 𝐴) → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10199, 100mpancom 688 . . . . . . . . 9 (𝑦 = 𝐴 → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10297, 101imbi12d 344 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) ↔ (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)))
103 eqid 2730 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})) = (𝑥𝑦 ↦ (rank‘{𝑥}))
104103rnmpt 5894 . . . . . . . . 9 ran (𝑥𝑦 ↦ (rank‘{𝑥})) = {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})}
105 cfon 10138 . . . . . . . . . . 11 (cf‘(rank‘𝑦)) ∈ On
106 sdomdom 8897 . . . . . . . . . . 11 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ≼ (cf‘(rank‘𝑦)))
107 ondomen 9920 . . . . . . . . . . 11 (((cf‘(rank‘𝑦)) ∈ On ∧ 𝑦 ≼ (cf‘(rank‘𝑦))) → 𝑦 ∈ dom card)
108105, 106, 107sylancr 587 . . . . . . . . . 10 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ∈ dom card)
109 fvex 6830 . . . . . . . . . . . 12 (rank‘{𝑥}) ∈ V
110109, 103fnmpti 6620 . . . . . . . . . . 11 (𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦
111 dffn4 6737 . . . . . . . . . . 11 ((𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 ↔ (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})))
112110, 111mpbi 230 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥}))
113 fodomnum 9940 . . . . . . . . . 10 (𝑦 ∈ dom card → ((𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦))
114108, 112, 113mpisyl 21 . . . . . . . . 9 (𝑦 ≺ (cf‘(rank‘𝑦)) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦)
115104, 114eqbrtrrid 5125 . . . . . . . 8 (𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦)
116102, 115vtoclg 3507 . . . . . . 7 (𝐴 (𝑅1 “ On) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
11746, 116syl 17 . . . . . 6 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
118 domtr 8924 . . . . . . 7 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → (cf‘(rank‘𝐴)) ≼ 𝐴)
119118, 40syl 17 . . . . . 6 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
12094, 117, 119syl6an 684 . . . . 5 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))))
121120pm2.01d 190 . . . 4 (Lim (rank‘𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
122121adantl 481 . . 3 (((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1239, 41, 1223jaoi 1430 . 2 (((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1243, 123ax-mp 5 1 ¬ 𝐴 ≺ (cf‘(rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2110  {cab 2708  wne 2926  wrex 3054  Vcvv 3434  wss 3900  c0 4281  {csn 4574   cuni 4857   ciun 4939   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cima 5617  Oncon0 6302  Lim wlim 6303  suc csuc 6304   Fn wfn 6472  ontowfo 6475  cfv 6477  1oc1o 8373  cdom 8862  csdm 8863  𝑅1cr1 9647  rankcrnk 9648  cardccrd 9820  cfccf 9822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-r1 9649  df-rank 9650  df-card 9824  df-cf 9826  df-acn 9827
This theorem is referenced by:  inatsk  10661  grur1  10703
  Copyright terms: Public domain W3C validator