MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Structured version   Visualization version   GIF version

Theorem rankcf 10737
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 𝐴 form a cofinal map into (rank‘𝐴). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf ¬ 𝐴 ≺ (cf‘(rank‘𝐴))

Proof of Theorem rankcf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 9755 . . 3 (rank‘𝐴) ∈ On
2 onzsl 7825 . . 3 ((rank‘𝐴) ∈ On ↔ ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))))
31, 2mpbi 230 . 2 ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)))
4 sdom0 9079 . . . 4 ¬ 𝐴 ≺ ∅
5 fveq2 6861 . . . . . 6 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = (cf‘∅))
6 cf0 10211 . . . . . 6 (cf‘∅) = ∅
75, 6eqtrdi 2781 . . . . 5 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = ∅)
87breq2d 5122 . . . 4 ((rank‘𝐴) = ∅ → (𝐴 ≺ (cf‘(rank‘𝐴)) ↔ 𝐴 ≺ ∅))
94, 8mtbiri 327 . . 3 ((rank‘𝐴) = ∅ → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
10 fveq2 6861 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) = (cf‘suc 𝑥))
11 cfsuc 10217 . . . . . . 7 (𝑥 ∈ On → (cf‘suc 𝑥) = 1o)
1210, 11sylan9eqr 2787 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) = 1o)
13 nsuceq0 6420 . . . . . . . . 9 suc 𝑥 ≠ ∅
14 neeq1 2988 . . . . . . . . 9 ((rank‘𝐴) = suc 𝑥 → ((rank‘𝐴) ≠ ∅ ↔ suc 𝑥 ≠ ∅))
1513, 14mpbiri 258 . . . . . . . 8 ((rank‘𝐴) = suc 𝑥 → (rank‘𝐴) ≠ ∅)
16 fveq2 6861 . . . . . . . . . . 11 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
17 0elon 6390 . . . . . . . . . . . . 13 ∅ ∈ On
18 r1fnon 9727 . . . . . . . . . . . . . 14 𝑅1 Fn On
1918fndmi 6625 . . . . . . . . . . . . 13 dom 𝑅1 = On
2017, 19eleqtrri 2828 . . . . . . . . . . . 12 ∅ ∈ dom 𝑅1
21 rankonid 9789 . . . . . . . . . . . 12 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
2220, 21mpbi 230 . . . . . . . . . . 11 (rank‘∅) = ∅
2316, 22eqtrdi 2781 . . . . . . . . . 10 (𝐴 = ∅ → (rank‘𝐴) = ∅)
2423necon3i 2958 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → 𝐴 ≠ ∅)
25 rankvaln 9759 . . . . . . . . . . 11 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
2625necon1ai 2953 . . . . . . . . . 10 ((rank‘𝐴) ≠ ∅ → 𝐴 (𝑅1 “ On))
27 breq2 5114 . . . . . . . . . . 11 (𝑦 = 𝐴 → (1o𝑦 ↔ 1o𝐴))
28 neeq1 2988 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
29 0sdom1dom 9192 . . . . . . . . . . . 12 (∅ ≺ 𝑦 ↔ 1o𝑦)
30 vex 3454 . . . . . . . . . . . . 13 𝑦 ∈ V
31300sdom 9078 . . . . . . . . . . . 12 (∅ ≺ 𝑦𝑦 ≠ ∅)
3229, 31bitr3i 277 . . . . . . . . . . 11 (1o𝑦𝑦 ≠ ∅)
3327, 28, 32vtoclbg 3526 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (1o𝐴𝐴 ≠ ∅))
3426, 33syl 17 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → (1o𝐴𝐴 ≠ ∅))
3524, 34mpbird 257 . . . . . . . 8 ((rank‘𝐴) ≠ ∅ → 1o𝐴)
3615, 35syl 17 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → 1o𝐴)
3736adantl 481 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → 1o𝐴)
3812, 37eqbrtrd 5132 . . . . 5 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) ≼ 𝐴)
3938rexlimiva 3127 . . . 4 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) ≼ 𝐴)
40 domnsym 9073 . . . 4 ((cf‘(rank‘𝐴)) ≼ 𝐴 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
4139, 40syl 17 . . 3 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
42 nlim0 6395 . . . . . . . . . . . . . . . . 17 ¬ Lim ∅
43 limeq 6347 . . . . . . . . . . . . . . . . 17 ((rank‘𝐴) = ∅ → (Lim (rank‘𝐴) ↔ Lim ∅))
4442, 43mtbiri 327 . . . . . . . . . . . . . . . 16 ((rank‘𝐴) = ∅ → ¬ Lim (rank‘𝐴))
4525, 44syl 17 . . . . . . . . . . . . . . 15 𝐴 (𝑅1 “ On) → ¬ Lim (rank‘𝐴))
4645con4i 114 . . . . . . . . . . . . . 14 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
47 r1elssi 9765 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
4846, 47syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
4948sselda 3949 . . . . . . . . . . . 12 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
50 ranksnb 9787 . . . . . . . . . . . 12 (𝑥 (𝑅1 “ On) → (rank‘{𝑥}) = suc (rank‘𝑥))
5149, 50syl 17 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) = suc (rank‘𝑥))
52 rankelb 9784 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
5346, 52syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
54 limsuc 7828 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ∈ (rank‘𝐴)))
5553, 54sylibd 239 . . . . . . . . . . . 12 (Lim (rank‘𝐴) → (𝑥𝐴 → suc (rank‘𝑥) ∈ (rank‘𝐴)))
5655imp 406 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → suc (rank‘𝑥) ∈ (rank‘𝐴))
5751, 56eqeltrd 2829 . . . . . . . . . 10 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) ∈ (rank‘𝐴))
58 eleq1a 2824 . . . . . . . . . 10 ((rank‘{𝑥}) ∈ (rank‘𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
5957, 58syl 17 . . . . . . . . 9 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6059rexlimdva 3135 . . . . . . . 8 (Lim (rank‘𝐴) → (∃𝑥𝐴 𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6160abssdv 4034 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴))
62 vsnex 5392 . . . . . . . . . . . . 13 {𝑥} ∈ V
6362dfiun2 5000 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
64 iunid 5027 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = 𝐴
6563, 64eqtr3i 2755 . . . . . . . . . . 11 {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} = 𝐴
6665fveq2i 6864 . . . . . . . . . 10 (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = (rank‘𝐴)
6747sselda 3949 . . . . . . . . . . . . . . 15 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
68 snwf 9769 . . . . . . . . . . . . . . 15 (𝑥 (𝑅1 “ On) → {𝑥} ∈ (𝑅1 “ On))
69 eleq1a 2824 . . . . . . . . . . . . . . 15 ({𝑥} ∈ (𝑅1 “ On) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7067, 68, 693syl 18 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7170rexlimdva 3135 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7271abssdv 4034 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On))
73 abrexexg 7942 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V)
74 eleq1 2817 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On)))
75 sseq1 3975 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
76 vex 3454 . . . . . . . . . . . . . . 15 𝑧 ∈ V
7776r1elss 9766 . . . . . . . . . . . . . 14 (𝑧 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On))
7874, 75, 77vtoclbg 3526 . . . . . . . . . . . . 13 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
7973, 78syl 17 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8072, 79mpbird 257 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On))
81 rankuni2b 9813 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8280, 81syl 17 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8366, 82eqtr3id 2779 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
84 fvex 6874 . . . . . . . . . . 11 (rank‘𝑧) ∈ V
8584dfiun2 5000 . . . . . . . . . 10 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)}
86 fveq2 6861 . . . . . . . . . . . 12 (𝑧 = {𝑥} → (rank‘𝑧) = (rank‘{𝑥}))
8762, 86abrexco 7221 . . . . . . . . . . 11 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8887unieqi 4886 . . . . . . . . . 10 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8985, 88eqtri 2753 . . . . . . . . 9 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9083, 89eqtr2di 2782 . . . . . . . 8 (𝐴 (𝑅1 “ On) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
9146, 90syl 17 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
92 fvex 6874 . . . . . . . 8 (rank‘𝐴) ∈ V
9392cfslb 10226 . . . . . . 7 ((Lim (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
9461, 91, 93mpd3an23 1465 . . . . . 6 (Lim (rank‘𝐴) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
95 2fveq3 6866 . . . . . . . . . 10 (𝑦 = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴)))
96 breq12 5115 . . . . . . . . . 10 ((𝑦 = 𝐴 ∧ (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
9795, 96mpdan 687 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
98 rexeq 3297 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑤 = (rank‘{𝑥}) ↔ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})))
9998abbidv 2796 . . . . . . . . . 10 (𝑦 = 𝐴 → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
100 breq12 5115 . . . . . . . . . 10 (({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ 𝑦 = 𝐴) → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10199, 100mpancom 688 . . . . . . . . 9 (𝑦 = 𝐴 → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10297, 101imbi12d 344 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) ↔ (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)))
103 eqid 2730 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})) = (𝑥𝑦 ↦ (rank‘{𝑥}))
104103rnmpt 5924 . . . . . . . . 9 ran (𝑥𝑦 ↦ (rank‘{𝑥})) = {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})}
105 cfon 10215 . . . . . . . . . . 11 (cf‘(rank‘𝑦)) ∈ On
106 sdomdom 8954 . . . . . . . . . . 11 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ≼ (cf‘(rank‘𝑦)))
107 ondomen 9997 . . . . . . . . . . 11 (((cf‘(rank‘𝑦)) ∈ On ∧ 𝑦 ≼ (cf‘(rank‘𝑦))) → 𝑦 ∈ dom card)
108105, 106, 107sylancr 587 . . . . . . . . . 10 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ∈ dom card)
109 fvex 6874 . . . . . . . . . . . 12 (rank‘{𝑥}) ∈ V
110109, 103fnmpti 6664 . . . . . . . . . . 11 (𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦
111 dffn4 6781 . . . . . . . . . . 11 ((𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 ↔ (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})))
112110, 111mpbi 230 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥}))
113 fodomnum 10017 . . . . . . . . . 10 (𝑦 ∈ dom card → ((𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦))
114108, 112, 113mpisyl 21 . . . . . . . . 9 (𝑦 ≺ (cf‘(rank‘𝑦)) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦)
115104, 114eqbrtrrid 5146 . . . . . . . 8 (𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦)
116102, 115vtoclg 3523 . . . . . . 7 (𝐴 (𝑅1 “ On) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
11746, 116syl 17 . . . . . 6 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
118 domtr 8981 . . . . . . 7 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → (cf‘(rank‘𝐴)) ≼ 𝐴)
119118, 40syl 17 . . . . . 6 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
12094, 117, 119syl6an 684 . . . . 5 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))))
121120pm2.01d 190 . . . 4 (Lim (rank‘𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
122121adantl 481 . . 3 (((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1239, 41, 1223jaoi 1430 . 2 (((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1243, 123ax-mp 5 1 ¬ 𝐴 ≺ (cf‘(rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wrex 3054  Vcvv 3450  wss 3917  c0 4299  {csn 4592   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cima 5644  Oncon0 6335  Lim wlim 6336  suc csuc 6337   Fn wfn 6509  ontowfo 6512  cfv 6514  1oc1o 8430  cdom 8919  csdm 8920  𝑅1cr1 9722  rankcrnk 9723  cardccrd 9895  cfccf 9897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-r1 9724  df-rank 9725  df-card 9899  df-cf 9901  df-acn 9902
This theorem is referenced by:  inatsk  10738  grur1  10780
  Copyright terms: Public domain W3C validator