Step | Hyp | Ref
| Expression |
1 | | rankon 9484 |
. . 3
⊢
(rank‘𝐴)
∈ On |
2 | | onzsl 7668 |
. . 3
⊢
((rank‘𝐴)
∈ On ↔ ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)))) |
3 | 1, 2 | mpbi 229 |
. 2
⊢
((rank‘𝐴) =
∅ ∨ ∃𝑥
∈ On (rank‘𝐴) =
suc 𝑥 ∨
((rank‘𝐴) ∈ V
∧ Lim (rank‘𝐴))) |
4 | | sdom0 8845 |
. . . 4
⊢ ¬
𝐴 ≺
∅ |
5 | | fveq2 6756 |
. . . . . 6
⊢
((rank‘𝐴) =
∅ → (cf‘(rank‘𝐴)) = (cf‘∅)) |
6 | | cf0 9938 |
. . . . . 6
⊢
(cf‘∅) = ∅ |
7 | 5, 6 | eqtrdi 2795 |
. . . . 5
⊢
((rank‘𝐴) =
∅ → (cf‘(rank‘𝐴)) = ∅) |
8 | 7 | breq2d 5082 |
. . . 4
⊢
((rank‘𝐴) =
∅ → (𝐴 ≺
(cf‘(rank‘𝐴))
↔ 𝐴 ≺
∅)) |
9 | 4, 8 | mtbiri 326 |
. . 3
⊢
((rank‘𝐴) =
∅ → ¬ 𝐴
≺ (cf‘(rank‘𝐴))) |
10 | | fveq2 6756 |
. . . . . . 7
⊢
((rank‘𝐴) =
suc 𝑥 →
(cf‘(rank‘𝐴)) =
(cf‘suc 𝑥)) |
11 | | cfsuc 9944 |
. . . . . . 7
⊢ (𝑥 ∈ On → (cf‘suc
𝑥) =
1o) |
12 | 10, 11 | sylan9eqr 2801 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧
(rank‘𝐴) = suc 𝑥) →
(cf‘(rank‘𝐴)) =
1o) |
13 | | nsuceq0 6331 |
. . . . . . . . 9
⊢ suc 𝑥 ≠ ∅ |
14 | | neeq1 3005 |
. . . . . . . . 9
⊢
((rank‘𝐴) =
suc 𝑥 →
((rank‘𝐴) ≠
∅ ↔ suc 𝑥 ≠
∅)) |
15 | 13, 14 | mpbiri 257 |
. . . . . . . 8
⊢
((rank‘𝐴) =
suc 𝑥 →
(rank‘𝐴) ≠
∅) |
16 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝐴 = ∅ →
(rank‘𝐴) =
(rank‘∅)) |
17 | | 0elon 6304 |
. . . . . . . . . . . . 13
⊢ ∅
∈ On |
18 | | r1fnon 9456 |
. . . . . . . . . . . . . 14
⊢
𝑅1 Fn On |
19 | 18 | fndmi 6521 |
. . . . . . . . . . . . 13
⊢ dom
𝑅1 = On |
20 | 17, 19 | eleqtrri 2838 |
. . . . . . . . . . . 12
⊢ ∅
∈ dom 𝑅1 |
21 | | rankonid 9518 |
. . . . . . . . . . . 12
⊢ (∅
∈ dom 𝑅1 ↔ (rank‘∅) =
∅) |
22 | 20, 21 | mpbi 229 |
. . . . . . . . . . 11
⊢
(rank‘∅) = ∅ |
23 | 16, 22 | eqtrdi 2795 |
. . . . . . . . . 10
⊢ (𝐴 = ∅ →
(rank‘𝐴) =
∅) |
24 | 23 | necon3i 2975 |
. . . . . . . . 9
⊢
((rank‘𝐴) ≠
∅ → 𝐴 ≠
∅) |
25 | | rankvaln 9488 |
. . . . . . . . . . 11
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) =
∅) |
26 | 25 | necon1ai 2970 |
. . . . . . . . . 10
⊢
((rank‘𝐴) ≠
∅ → 𝐴 ∈
∪ (𝑅1 “
On)) |
27 | | breq2 5074 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (1o ≼ 𝑦 ↔ 1o ≼
𝐴)) |
28 | | neeq1 3005 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅)) |
29 | | 0sdom1dom 8950 |
. . . . . . . . . . . 12
⊢ (∅
≺ 𝑦 ↔
1o ≼ 𝑦) |
30 | | vex 3426 |
. . . . . . . . . . . . 13
⊢ 𝑦 ∈ V |
31 | 30 | 0sdom 8844 |
. . . . . . . . . . . 12
⊢ (∅
≺ 𝑦 ↔ 𝑦 ≠ ∅) |
32 | 29, 31 | bitr3i 276 |
. . . . . . . . . . 11
⊢
(1o ≼ 𝑦 ↔ 𝑦 ≠ ∅) |
33 | 27, 28, 32 | vtoclbg 3497 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (1o
≼ 𝐴 ↔ 𝐴 ≠ ∅)) |
34 | 26, 33 | syl 17 |
. . . . . . . . 9
⊢
((rank‘𝐴) ≠
∅ → (1o ≼ 𝐴 ↔ 𝐴 ≠ ∅)) |
35 | 24, 34 | mpbird 256 |
. . . . . . . 8
⊢
((rank‘𝐴) ≠
∅ → 1o ≼ 𝐴) |
36 | 15, 35 | syl 17 |
. . . . . . 7
⊢
((rank‘𝐴) =
suc 𝑥 → 1o
≼ 𝐴) |
37 | 36 | adantl 481 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧
(rank‘𝐴) = suc 𝑥) → 1o ≼
𝐴) |
38 | 12, 37 | eqbrtrd 5092 |
. . . . 5
⊢ ((𝑥 ∈ On ∧
(rank‘𝐴) = suc 𝑥) →
(cf‘(rank‘𝐴))
≼ 𝐴) |
39 | 38 | rexlimiva 3209 |
. . . 4
⊢
(∃𝑥 ∈ On
(rank‘𝐴) = suc 𝑥 →
(cf‘(rank‘𝐴))
≼ 𝐴) |
40 | | domnsym 8839 |
. . . 4
⊢
((cf‘(rank‘𝐴)) ≼ 𝐴 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))) |
41 | 39, 40 | syl 17 |
. . 3
⊢
(∃𝑥 ∈ On
(rank‘𝐴) = suc 𝑥 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))) |
42 | | nlim0 6309 |
. . . . . . . . . . . . . . . . 17
⊢ ¬
Lim ∅ |
43 | | limeq 6263 |
. . . . . . . . . . . . . . . . 17
⊢
((rank‘𝐴) =
∅ → (Lim (rank‘𝐴) ↔ Lim ∅)) |
44 | 42, 43 | mtbiri 326 |
. . . . . . . . . . . . . . . 16
⊢
((rank‘𝐴) =
∅ → ¬ Lim (rank‘𝐴)) |
45 | 25, 44 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝐴 ∈ ∪ (𝑅1 “ On) → ¬ Lim
(rank‘𝐴)) |
46 | 45 | con4i 114 |
. . . . . . . . . . . . . 14
⊢ (Lim
(rank‘𝐴) → 𝐴 ∈ ∪ (𝑅1 “ On)) |
47 | | r1elssi 9494 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . 13
⊢ (Lim
(rank‘𝐴) → 𝐴 ⊆ ∪ (𝑅1 “ On)) |
49 | 48 | sselda 3917 |
. . . . . . . . . . . 12
⊢ ((Lim
(rank‘𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
50 | | ranksnb 9516 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) →
(rank‘{𝑥}) = suc
(rank‘𝑥)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((Lim
(rank‘𝐴) ∧ 𝑥 ∈ 𝐴) → (rank‘{𝑥}) = suc (rank‘𝑥)) |
52 | | rankelb 9513 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))) |
53 | 46, 52 | syl 17 |
. . . . . . . . . . . . 13
⊢ (Lim
(rank‘𝐴) →
(𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))) |
54 | | limsuc 7671 |
. . . . . . . . . . . . 13
⊢ (Lim
(rank‘𝐴) →
((rank‘𝑥) ∈
(rank‘𝐴) ↔ suc
(rank‘𝑥) ∈
(rank‘𝐴))) |
55 | 53, 54 | sylibd 238 |
. . . . . . . . . . . 12
⊢ (Lim
(rank‘𝐴) →
(𝑥 ∈ 𝐴 → suc (rank‘𝑥) ∈ (rank‘𝐴))) |
56 | 55 | imp 406 |
. . . . . . . . . . 11
⊢ ((Lim
(rank‘𝐴) ∧ 𝑥 ∈ 𝐴) → suc (rank‘𝑥) ∈ (rank‘𝐴)) |
57 | 51, 56 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ ((Lim
(rank‘𝐴) ∧ 𝑥 ∈ 𝐴) → (rank‘{𝑥}) ∈ (rank‘𝐴)) |
58 | | eleq1a 2834 |
. . . . . . . . . 10
⊢
((rank‘{𝑥})
∈ (rank‘𝐴)
→ (𝑤 =
(rank‘{𝑥}) →
𝑤 ∈ (rank‘𝐴))) |
59 | 57, 58 | syl 17 |
. . . . . . . . 9
⊢ ((Lim
(rank‘𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴))) |
60 | 59 | rexlimdva 3212 |
. . . . . . . 8
⊢ (Lim
(rank‘𝐴) →
(∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴))) |
61 | 60 | abssdv 3998 |
. . . . . . 7
⊢ (Lim
(rank‘𝐴) →
{𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴)) |
62 | | snex 5349 |
. . . . . . . . . . . . 13
⊢ {𝑥} ∈ V |
63 | 62 | dfiun2 4959 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = ∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} |
64 | | iunid 4986 |
. . . . . . . . . . . 12
⊢ ∪ 𝑥 ∈ 𝐴 {𝑥} = 𝐴 |
65 | 63, 64 | eqtr3i 2768 |
. . . . . . . . . . 11
⊢ ∪ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = {𝑥}} = 𝐴 |
66 | 65 | fveq2i 6759 |
. . . . . . . . . 10
⊢
(rank‘∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}}) = (rank‘𝐴) |
67 | 47 | sselda 3917 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ∪
(𝑅1 “ On)) |
68 | | snwf 9498 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ∪ (𝑅1 “ On) → {𝑥} ∈ ∪ (𝑅1 “ On)) |
69 | | eleq1a 2834 |
. . . . . . . . . . . . . . 15
⊢ ({𝑥} ∈ ∪ (𝑅1 “ On) → (𝑦 = {𝑥} → 𝑦 ∈ ∪
(𝑅1 “ On))) |
70 | 67, 68, 69 | 3syl 18 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝑥 ∈ 𝐴) → (𝑦 = {𝑥} → 𝑦 ∈ ∪
(𝑅1 “ On))) |
71 | 70 | rexlimdva 3212 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (∃𝑥 ∈ 𝐴 𝑦 = {𝑥} → 𝑦 ∈ ∪
(𝑅1 “ On))) |
72 | 71 | abssdv 3998 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ⊆ ∪
(𝑅1 “ On)) |
73 | | abrexexg 7777 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ V) |
74 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} → (𝑧 ∈ ∪
(𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ ∪
(𝑅1 “ On))) |
75 | | sseq1 3942 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} → (𝑧 ⊆ ∪
(𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ⊆ ∪
(𝑅1 “ On))) |
76 | | vex 3426 |
. . . . . . . . . . . . . . 15
⊢ 𝑧 ∈ V |
77 | 76 | r1elss 9495 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ∪ (𝑅1 “ On) ↔ 𝑧 ⊆ ∪ (𝑅1 “ On)) |
78 | 74, 75, 77 | vtoclbg 3497 |
. . . . . . . . . . . . 13
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ V → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ ∪
(𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ⊆ ∪
(𝑅1 “ On))) |
79 | 73, 78 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ ∪
(𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ⊆ ∪
(𝑅1 “ On))) |
80 | 72, 79 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ ∪
(𝑅1 “ On)) |
81 | | rankuni2b 9542 |
. . . . . . . . . . 11
⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} ∈ ∪
(𝑅1 “ On) → (rank‘∪ {𝑦
∣ ∃𝑥 ∈
𝐴 𝑦 = {𝑥}}) = ∪
𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} (rank‘𝑧)) |
82 | 80, 81 | syl 17 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘∪ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}}) = ∪
𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} (rank‘𝑧)) |
83 | 66, 82 | eqtr3id 2793 |
. . . . . . . . 9
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) →
(rank‘𝐴) = ∪ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} (rank‘𝑧)) |
84 | | fvex 6769 |
. . . . . . . . . . 11
⊢
(rank‘𝑧)
∈ V |
85 | 84 | dfiun2 4959 |
. . . . . . . . . 10
⊢ ∪ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} (rank‘𝑧) = ∪ {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} |
86 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑧 = {𝑥} → (rank‘𝑧) = (rank‘{𝑥})) |
87 | 62, 86 | abrexco 7099 |
. . . . . . . . . . 11
⊢ {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} |
88 | 87 | unieqi 4849 |
. . . . . . . . . 10
⊢ ∪ {𝑤
∣ ∃𝑧 ∈
{𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = ∪ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} |
89 | 85, 88 | eqtri 2766 |
. . . . . . . . 9
⊢ ∪ 𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = {𝑥}} (rank‘𝑧) = ∪ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} |
90 | 83, 89 | eqtr2di 2796 |
. . . . . . . 8
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → ∪ {𝑤
∣ ∃𝑥 ∈
𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) |
91 | 46, 90 | syl 17 |
. . . . . . 7
⊢ (Lim
(rank‘𝐴) → ∪ {𝑤
∣ ∃𝑥 ∈
𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) |
92 | | fvex 6769 |
. . . . . . . 8
⊢
(rank‘𝐴)
∈ V |
93 | 92 | cfslb 9953 |
. . . . . . 7
⊢ ((Lim
(rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴) ∧ ∪ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})}) |
94 | 61, 91, 93 | mpd3an23 1461 |
. . . . . 6
⊢ (Lim
(rank‘𝐴) →
(cf‘(rank‘𝐴))
≼ {𝑤 ∣
∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})}) |
95 | | 2fveq3 6761 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) |
96 | | breq12 5075 |
. . . . . . . . . 10
⊢ ((𝑦 = 𝐴 ∧ (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴)))) |
97 | 95, 96 | mpdan 683 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴)))) |
98 | | rexeq 3334 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → (∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥}) ↔ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥}))) |
99 | 98 | abbidv 2808 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → {𝑤 ∣ ∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})}) |
100 | | breq12 5075 |
. . . . . . . . . 10
⊢ (({𝑤 ∣ ∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ∧ 𝑦 = 𝐴) → ({𝑤 ∣ ∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)) |
101 | 99, 100 | mpancom 684 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ({𝑤 ∣ ∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)) |
102 | 97, 101 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → ((𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) ↔ (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))) |
103 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) = (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) |
104 | 103 | rnmpt 5853 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) = {𝑤 ∣ ∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} |
105 | | cfon 9942 |
. . . . . . . . . . 11
⊢
(cf‘(rank‘𝑦)) ∈ On |
106 | | sdomdom 8723 |
. . . . . . . . . . 11
⊢ (𝑦 ≺
(cf‘(rank‘𝑦))
→ 𝑦 ≼
(cf‘(rank‘𝑦))) |
107 | | ondomen 9724 |
. . . . . . . . . . 11
⊢
(((cf‘(rank‘𝑦)) ∈ On ∧ 𝑦 ≼ (cf‘(rank‘𝑦))) → 𝑦 ∈ dom card) |
108 | 105, 106,
107 | sylancr 586 |
. . . . . . . . . 10
⊢ (𝑦 ≺
(cf‘(rank‘𝑦))
→ 𝑦 ∈ dom
card) |
109 | | fvex 6769 |
. . . . . . . . . . . 12
⊢
(rank‘{𝑥})
∈ V |
110 | 109, 103 | fnmpti 6560 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 |
111 | | dffn4 6678 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 ↔ (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})):𝑦–onto→ran (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥}))) |
112 | 110, 111 | mpbi 229 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})):𝑦–onto→ran (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) |
113 | | fodomnum 9744 |
. . . . . . . . . 10
⊢ (𝑦 ∈ dom card → ((𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})):𝑦–onto→ran (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) → ran (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦)) |
114 | 108, 112,
113 | mpisyl 21 |
. . . . . . . . 9
⊢ (𝑦 ≺
(cf‘(rank‘𝑦))
→ ran (𝑥 ∈ 𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦) |
115 | 104, 114 | eqbrtrrid 5106 |
. . . . . . . 8
⊢ (𝑦 ≺
(cf‘(rank‘𝑦))
→ {𝑤 ∣
∃𝑥 ∈ 𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) |
116 | 102, 115 | vtoclg 3495 |
. . . . . . 7
⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝐴 ≺
(cf‘(rank‘𝐴))
→ {𝑤 ∣
∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)) |
117 | 46, 116 | syl 17 |
. . . . . 6
⊢ (Lim
(rank‘𝐴) →
(𝐴 ≺
(cf‘(rank‘𝐴))
→ {𝑤 ∣
∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)) |
118 | | domtr 8748 |
. . . . . . 7
⊢
(((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → (cf‘(rank‘𝐴)) ≼ 𝐴) |
119 | 118, 40 | syl 17 |
. . . . . 6
⊢
(((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥 ∈ 𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))) |
120 | 94, 117, 119 | syl6an 680 |
. . . . 5
⊢ (Lim
(rank‘𝐴) →
(𝐴 ≺
(cf‘(rank‘𝐴))
→ ¬ 𝐴 ≺
(cf‘(rank‘𝐴)))) |
121 | 120 | pm2.01d 189 |
. . . 4
⊢ (Lim
(rank‘𝐴) → ¬
𝐴 ≺
(cf‘(rank‘𝐴))) |
122 | 121 | adantl 481 |
. . 3
⊢
(((rank‘𝐴)
∈ V ∧ Lim (rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))) |
123 | 9, 41, 122 | 3jaoi 1425 |
. 2
⊢
(((rank‘𝐴) =
∅ ∨ ∃𝑥
∈ On (rank‘𝐴) =
suc 𝑥 ∨
((rank‘𝐴) ∈ V
∧ Lim (rank‘𝐴)))
→ ¬ 𝐴 ≺
(cf‘(rank‘𝐴))) |
124 | 3, 123 | ax-mp 5 |
1
⊢ ¬
𝐴 ≺
(cf‘(rank‘𝐴)) |