MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankcf Structured version   Visualization version   GIF version

Theorem rankcf 10817
Description: Any set must be at least as large as the cofinality of its rank, because the ranks of the elements of 𝐴 form a cofinal map into (rank‘𝐴). (Contributed by Mario Carneiro, 27-May-2013.)
Assertion
Ref Expression
rankcf ¬ 𝐴 ≺ (cf‘(rank‘𝐴))

Proof of Theorem rankcf
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rankon 9835 . . 3 (rank‘𝐴) ∈ On
2 onzsl 7867 . . 3 ((rank‘𝐴) ∈ On ↔ ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))))
31, 2mpbi 230 . 2 ((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)))
4 sdom0 9148 . . . 4 ¬ 𝐴 ≺ ∅
5 fveq2 6906 . . . . . 6 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = (cf‘∅))
6 cf0 10291 . . . . . 6 (cf‘∅) = ∅
75, 6eqtrdi 2793 . . . . 5 ((rank‘𝐴) = ∅ → (cf‘(rank‘𝐴)) = ∅)
87breq2d 5155 . . . 4 ((rank‘𝐴) = ∅ → (𝐴 ≺ (cf‘(rank‘𝐴)) ↔ 𝐴 ≺ ∅))
94, 8mtbiri 327 . . 3 ((rank‘𝐴) = ∅ → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
10 fveq2 6906 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) = (cf‘suc 𝑥))
11 cfsuc 10297 . . . . . . 7 (𝑥 ∈ On → (cf‘suc 𝑥) = 1o)
1210, 11sylan9eqr 2799 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) = 1o)
13 nsuceq0 6467 . . . . . . . . 9 suc 𝑥 ≠ ∅
14 neeq1 3003 . . . . . . . . 9 ((rank‘𝐴) = suc 𝑥 → ((rank‘𝐴) ≠ ∅ ↔ suc 𝑥 ≠ ∅))
1513, 14mpbiri 258 . . . . . . . 8 ((rank‘𝐴) = suc 𝑥 → (rank‘𝐴) ≠ ∅)
16 fveq2 6906 . . . . . . . . . . 11 (𝐴 = ∅ → (rank‘𝐴) = (rank‘∅))
17 0elon 6438 . . . . . . . . . . . . 13 ∅ ∈ On
18 r1fnon 9807 . . . . . . . . . . . . . 14 𝑅1 Fn On
1918fndmi 6672 . . . . . . . . . . . . 13 dom 𝑅1 = On
2017, 19eleqtrri 2840 . . . . . . . . . . . 12 ∅ ∈ dom 𝑅1
21 rankonid 9869 . . . . . . . . . . . 12 (∅ ∈ dom 𝑅1 ↔ (rank‘∅) = ∅)
2220, 21mpbi 230 . . . . . . . . . . 11 (rank‘∅) = ∅
2316, 22eqtrdi 2793 . . . . . . . . . 10 (𝐴 = ∅ → (rank‘𝐴) = ∅)
2423necon3i 2973 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → 𝐴 ≠ ∅)
25 rankvaln 9839 . . . . . . . . . . 11 𝐴 (𝑅1 “ On) → (rank‘𝐴) = ∅)
2625necon1ai 2968 . . . . . . . . . 10 ((rank‘𝐴) ≠ ∅ → 𝐴 (𝑅1 “ On))
27 breq2 5147 . . . . . . . . . . 11 (𝑦 = 𝐴 → (1o𝑦 ↔ 1o𝐴))
28 neeq1 3003 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ≠ ∅ ↔ 𝐴 ≠ ∅))
29 0sdom1dom 9274 . . . . . . . . . . . 12 (∅ ≺ 𝑦 ↔ 1o𝑦)
30 vex 3484 . . . . . . . . . . . . 13 𝑦 ∈ V
31300sdom 9147 . . . . . . . . . . . 12 (∅ ≺ 𝑦𝑦 ≠ ∅)
3229, 31bitr3i 277 . . . . . . . . . . 11 (1o𝑦𝑦 ≠ ∅)
3327, 28, 32vtoclbg 3557 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (1o𝐴𝐴 ≠ ∅))
3426, 33syl 17 . . . . . . . . 9 ((rank‘𝐴) ≠ ∅ → (1o𝐴𝐴 ≠ ∅))
3524, 34mpbird 257 . . . . . . . 8 ((rank‘𝐴) ≠ ∅ → 1o𝐴)
3615, 35syl 17 . . . . . . 7 ((rank‘𝐴) = suc 𝑥 → 1o𝐴)
3736adantl 481 . . . . . 6 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → 1o𝐴)
3812, 37eqbrtrd 5165 . . . . 5 ((𝑥 ∈ On ∧ (rank‘𝐴) = suc 𝑥) → (cf‘(rank‘𝐴)) ≼ 𝐴)
3938rexlimiva 3147 . . . 4 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → (cf‘(rank‘𝐴)) ≼ 𝐴)
40 domnsym 9139 . . . 4 ((cf‘(rank‘𝐴)) ≼ 𝐴 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
4139, 40syl 17 . . 3 (∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
42 nlim0 6443 . . . . . . . . . . . . . . . . 17 ¬ Lim ∅
43 limeq 6396 . . . . . . . . . . . . . . . . 17 ((rank‘𝐴) = ∅ → (Lim (rank‘𝐴) ↔ Lim ∅))
4442, 43mtbiri 327 . . . . . . . . . . . . . . . 16 ((rank‘𝐴) = ∅ → ¬ Lim (rank‘𝐴))
4525, 44syl 17 . . . . . . . . . . . . . . 15 𝐴 (𝑅1 “ On) → ¬ Lim (rank‘𝐴))
4645con4i 114 . . . . . . . . . . . . . 14 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
47 r1elssi 9845 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → 𝐴 (𝑅1 “ On))
4846, 47syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → 𝐴 (𝑅1 “ On))
4948sselda 3983 . . . . . . . . . . . 12 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
50 ranksnb 9867 . . . . . . . . . . . 12 (𝑥 (𝑅1 “ On) → (rank‘{𝑥}) = suc (rank‘𝑥))
5149, 50syl 17 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) = suc (rank‘𝑥))
52 rankelb 9864 . . . . . . . . . . . . . 14 (𝐴 (𝑅1 “ On) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
5346, 52syl 17 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → (𝑥𝐴 → (rank‘𝑥) ∈ (rank‘𝐴)))
54 limsuc 7870 . . . . . . . . . . . . 13 (Lim (rank‘𝐴) → ((rank‘𝑥) ∈ (rank‘𝐴) ↔ suc (rank‘𝑥) ∈ (rank‘𝐴)))
5553, 54sylibd 239 . . . . . . . . . . . 12 (Lim (rank‘𝐴) → (𝑥𝐴 → suc (rank‘𝑥) ∈ (rank‘𝐴)))
5655imp 406 . . . . . . . . . . 11 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → suc (rank‘𝑥) ∈ (rank‘𝐴))
5751, 56eqeltrd 2841 . . . . . . . . . 10 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (rank‘{𝑥}) ∈ (rank‘𝐴))
58 eleq1a 2836 . . . . . . . . . 10 ((rank‘{𝑥}) ∈ (rank‘𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
5957, 58syl 17 . . . . . . . . 9 ((Lim (rank‘𝐴) ∧ 𝑥𝐴) → (𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6059rexlimdva 3155 . . . . . . . 8 (Lim (rank‘𝐴) → (∃𝑥𝐴 𝑤 = (rank‘{𝑥}) → 𝑤 ∈ (rank‘𝐴)))
6160abssdv 4068 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴))
62 vsnex 5434 . . . . . . . . . . . . 13 {𝑥} ∈ V
6362dfiun2 5033 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}
64 iunid 5060 . . . . . . . . . . . 12 𝑥𝐴 {𝑥} = 𝐴
6563, 64eqtr3i 2767 . . . . . . . . . . 11 {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} = 𝐴
6665fveq2i 6909 . . . . . . . . . 10 (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = (rank‘𝐴)
6747sselda 3983 . . . . . . . . . . . . . . 15 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → 𝑥 (𝑅1 “ On))
68 snwf 9849 . . . . . . . . . . . . . . 15 (𝑥 (𝑅1 “ On) → {𝑥} ∈ (𝑅1 “ On))
69 eleq1a 2836 . . . . . . . . . . . . . . 15 ({𝑥} ∈ (𝑅1 “ On) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7067, 68, 693syl 18 . . . . . . . . . . . . . 14 ((𝐴 (𝑅1 “ On) ∧ 𝑥𝐴) → (𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7170rexlimdva 3155 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → (∃𝑥𝐴 𝑦 = {𝑥} → 𝑦 (𝑅1 “ On)))
7271abssdv 4068 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On))
73 abrexexg 7985 . . . . . . . . . . . . 13 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V)
74 eleq1 2829 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On)))
75 sseq1 4009 . . . . . . . . . . . . . 14 (𝑧 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} → (𝑧 (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
76 vex 3484 . . . . . . . . . . . . . . 15 𝑧 ∈ V
7776r1elss 9846 . . . . . . . . . . . . . 14 (𝑧 (𝑅1 “ On) ↔ 𝑧 (𝑅1 “ On))
7874, 75, 77vtoclbg 3557 . . . . . . . . . . . . 13 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ V → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
7973, 78syl 17 . . . . . . . . . . . 12 (𝐴 (𝑅1 “ On) → ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ⊆ (𝑅1 “ On)))
8072, 79mpbird 257 . . . . . . . . . . 11 (𝐴 (𝑅1 “ On) → {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On))
81 rankuni2b 9893 . . . . . . . . . . 11 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} ∈ (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8280, 81syl 17 . . . . . . . . . 10 (𝐴 (𝑅1 “ On) → (rank‘ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
8366, 82eqtr3id 2791 . . . . . . . . 9 (𝐴 (𝑅1 “ On) → (rank‘𝐴) = 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧))
84 fvex 6919 . . . . . . . . . . 11 (rank‘𝑧) ∈ V
8584dfiun2 5033 . . . . . . . . . 10 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)}
86 fveq2 6906 . . . . . . . . . . . 12 (𝑧 = {𝑥} → (rank‘𝑧) = (rank‘{𝑥}))
8762, 86abrexco 7264 . . . . . . . . . . 11 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8887unieqi 4919 . . . . . . . . . 10 {𝑤 ∣ ∃𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}}𝑤 = (rank‘𝑧)} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
8985, 88eqtri 2765 . . . . . . . . 9 𝑧 ∈ {𝑦 ∣ ∃𝑥𝐴 𝑦 = {𝑥}} (rank‘𝑧) = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})}
9083, 89eqtr2di 2794 . . . . . . . 8 (𝐴 (𝑅1 “ On) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
9146, 90syl 17 . . . . . . 7 (Lim (rank‘𝐴) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴))
92 fvex 6919 . . . . . . . 8 (rank‘𝐴) ∈ V
9392cfslb 10306 . . . . . . 7 ((Lim (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ⊆ (rank‘𝐴) ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} = (rank‘𝐴)) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
9461, 91, 93mpd3an23 1465 . . . . . 6 (Lim (rank‘𝐴) → (cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
95 2fveq3 6911 . . . . . . . . . 10 (𝑦 = 𝐴 → (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴)))
96 breq12 5148 . . . . . . . . . 10 ((𝑦 = 𝐴 ∧ (cf‘(rank‘𝑦)) = (cf‘(rank‘𝐴))) → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
9795, 96mpdan 687 . . . . . . . . 9 (𝑦 = 𝐴 → (𝑦 ≺ (cf‘(rank‘𝑦)) ↔ 𝐴 ≺ (cf‘(rank‘𝐴))))
98 rexeq 3322 . . . . . . . . . . 11 (𝑦 = 𝐴 → (∃𝑥𝑦 𝑤 = (rank‘{𝑥}) ↔ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})))
9998abbidv 2808 . . . . . . . . . 10 (𝑦 = 𝐴 → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})})
100 breq12 5148 . . . . . . . . . 10 (({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} = {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ 𝑦 = 𝐴) → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10199, 100mpancom 688 . . . . . . . . 9 (𝑦 = 𝐴 → ({𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦 ↔ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
10297, 101imbi12d 344 . . . . . . . 8 (𝑦 = 𝐴 → ((𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦) ↔ (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴)))
103 eqid 2737 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})) = (𝑥𝑦 ↦ (rank‘{𝑥}))
104103rnmpt 5968 . . . . . . . . 9 ran (𝑥𝑦 ↦ (rank‘{𝑥})) = {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})}
105 cfon 10295 . . . . . . . . . . 11 (cf‘(rank‘𝑦)) ∈ On
106 sdomdom 9020 . . . . . . . . . . 11 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ≼ (cf‘(rank‘𝑦)))
107 ondomen 10077 . . . . . . . . . . 11 (((cf‘(rank‘𝑦)) ∈ On ∧ 𝑦 ≼ (cf‘(rank‘𝑦))) → 𝑦 ∈ dom card)
108105, 106, 107sylancr 587 . . . . . . . . . 10 (𝑦 ≺ (cf‘(rank‘𝑦)) → 𝑦 ∈ dom card)
109 fvex 6919 . . . . . . . . . . . 12 (rank‘{𝑥}) ∈ V
110109, 103fnmpti 6711 . . . . . . . . . . 11 (𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦
111 dffn4 6826 . . . . . . . . . . 11 ((𝑥𝑦 ↦ (rank‘{𝑥})) Fn 𝑦 ↔ (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})))
112110, 111mpbi 230 . . . . . . . . . 10 (𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥}))
113 fodomnum 10097 . . . . . . . . . 10 (𝑦 ∈ dom card → ((𝑥𝑦 ↦ (rank‘{𝑥})):𝑦onto→ran (𝑥𝑦 ↦ (rank‘{𝑥})) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦))
114108, 112, 113mpisyl 21 . . . . . . . . 9 (𝑦 ≺ (cf‘(rank‘𝑦)) → ran (𝑥𝑦 ↦ (rank‘{𝑥})) ≼ 𝑦)
115104, 114eqbrtrrid 5179 . . . . . . . 8 (𝑦 ≺ (cf‘(rank‘𝑦)) → {𝑤 ∣ ∃𝑥𝑦 𝑤 = (rank‘{𝑥})} ≼ 𝑦)
116102, 115vtoclg 3554 . . . . . . 7 (𝐴 (𝑅1 “ On) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
11746, 116syl 17 . . . . . 6 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴))
118 domtr 9047 . . . . . . 7 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → (cf‘(rank‘𝐴)) ≼ 𝐴)
119118, 40syl 17 . . . . . 6 (((cf‘(rank‘𝐴)) ≼ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ∧ {𝑤 ∣ ∃𝑥𝐴 𝑤 = (rank‘{𝑥})} ≼ 𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
12094, 117, 119syl6an 684 . . . . 5 (Lim (rank‘𝐴) → (𝐴 ≺ (cf‘(rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴))))
121120pm2.01d 190 . . . 4 (Lim (rank‘𝐴) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
122121adantl 481 . . 3 (((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴)) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1239, 41, 1223jaoi 1430 . 2 (((rank‘𝐴) = ∅ ∨ ∃𝑥 ∈ On (rank‘𝐴) = suc 𝑥 ∨ ((rank‘𝐴) ∈ V ∧ Lim (rank‘𝐴))) → ¬ 𝐴 ≺ (cf‘(rank‘𝐴)))
1243, 123ax-mp 5 1 ¬ 𝐴 ≺ (cf‘(rank‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1086   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wrex 3070  Vcvv 3480  wss 3951  c0 4333  {csn 4626   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cima 5688  Oncon0 6384  Lim wlim 6385  suc csuc 6386   Fn wfn 6556  ontowfo 6559  cfv 6561  1oc1o 8499  cdom 8983  csdm 8984  𝑅1cr1 9802  rankcrnk 9803  cardccrd 9975  cfccf 9977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-r1 9804  df-rank 9805  df-card 9979  df-cf 9981  df-acn 9982
This theorem is referenced by:  inatsk  10818  grur1  10860
  Copyright terms: Public domain W3C validator