Step | Hyp | Ref
| Expression |
1 | | smu01lem.1 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆
ℕ0) |
2 | | smu01lem.2 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆
ℕ0) |
3 | | smucl 16191 |
. . . . . 6
⊢ ((𝐴 ⊆ ℕ0
∧ 𝐵 ⊆
ℕ0) → (𝐴 smul 𝐵) ⊆
ℕ0) |
4 | 1, 2, 3 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (𝐴 smul 𝐵) ⊆
ℕ0) |
5 | 4 | sseld 3920 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → 𝑘 ∈
ℕ0)) |
6 | | noel 4264 |
. . . . . . 7
⊢ ¬
𝑘 ∈
∅ |
7 | | peano2nn0 12273 |
. . . . . . . . . 10
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ0) |
8 | | fveqeq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 0 → ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = ∅ ↔ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) =
∅)) |
9 | 8 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → ((𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = ∅) ↔ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) =
∅))) |
10 | | fveqeq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑘 → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = ∅ ↔ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = ∅)) |
11 | 10 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑘 → ((𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = ∅) ↔ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = ∅))) |
12 | | fveqeq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑘 + 1) → ((seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = ∅ ↔ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅)) |
13 | 12 | imbi2d 341 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑘 + 1) → ((𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑥) = ∅) ↔ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅))) |
14 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) |
15 | 1, 2, 14 | smup0 16186 |
. . . . . . . . . . 11
⊢ (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘0) =
∅) |
16 | | oveq1 7282 |
. . . . . . . . . . . . . 14
⊢
((seq0((𝑝 ∈
𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = ∅ → ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = (∅ sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
17 | 1 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ⊆
ℕ0) |
18 | 2 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐵 ⊆
ℕ0) |
19 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
20 | 17, 18, 14, 19 | smupp1 16187 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
21 | | smu01lem.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ (𝑘 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0))
→ ¬ (𝑘 ∈
𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) |
22 | 21 | anassrs 468 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 ∈ ℕ0)
→ ¬ (𝑘 ∈
𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) |
23 | 22 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
∀𝑛 ∈
ℕ0 ¬ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) |
24 | | rabeq0 4318 |
. . . . . . . . . . . . . . . . . 18
⊢ ({𝑛 ∈ ℕ0
∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)} = ∅ ↔ ∀𝑛 ∈ ℕ0
¬ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)) |
25 | 23, 24 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → {𝑛 ∈ ℕ0
∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)} = ∅) |
26 | 25 | oveq2d 7291 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (∅
sadd {𝑛 ∈
ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = (∅ sadd
∅)) |
27 | | 0ss 4330 |
. . . . . . . . . . . . . . . . 17
⊢ ∅
⊆ ℕ0 |
28 | | sadid1 16175 |
. . . . . . . . . . . . . . . . 17
⊢ (∅
⊆ ℕ0 → (∅ sadd ∅) =
∅) |
29 | 27, 28 | mp1i 13 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (∅
sadd ∅) = ∅) |
30 | 26, 29 | eqtr2d 2779 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ∅ =
(∅ sadd {𝑛 ∈
ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)})) |
31 | 20, 30 | eqeq12d 2754 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) = ∅ ↔
((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}) = (∅ sadd {𝑛 ∈ ℕ0 ∣ (𝑘 ∈ 𝐴 ∧ (𝑛 − 𝑘) ∈ 𝐵)}))) |
32 | 16, 31 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = ∅ → (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅)) |
33 | 32 | expcom 414 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℕ0
→ (𝜑 →
((seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = ∅ → (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅))) |
34 | 33 | a2d 29 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ0
→ ((𝜑 →
(seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘) = ∅) → (𝜑 → (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅))) |
35 | 9, 11, 13, 13, 15, 34 | nn0ind 12415 |
. . . . . . . . . 10
⊢ ((𝑘 + 1) ∈ ℕ0
→ (𝜑 → (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅)) |
36 | 7, 35 | syl 17 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ0
→ (𝜑 → (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅)) |
37 | 36 | impcom 408 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) =
∅) |
38 | 37 | eleq2d 2824 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)) ↔ 𝑘 ∈ ∅)) |
39 | 6, 38 | mtbiri 327 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ¬
𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))) |
40 | 17, 18, 14, 19 | smuval 16188 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0
↦ (𝑝 sadd {𝑛 ∈ ℕ0
∣ (𝑚 ∈ 𝐴 ∧ (𝑛 − 𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1)))) |
41 | 39, 40 | mtbird 325 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → ¬
𝑘 ∈ (𝐴 smul 𝐵)) |
42 | 41 | ex 413 |
. . . 4
⊢ (𝜑 → (𝑘 ∈ ℕ0 → ¬
𝑘 ∈ (𝐴 smul 𝐵))) |
43 | 5, 42 | syld 47 |
. . 3
⊢ (𝜑 → (𝑘 ∈ (𝐴 smul 𝐵) → ¬ 𝑘 ∈ (𝐴 smul 𝐵))) |
44 | 43 | pm2.01d 189 |
. 2
⊢ (𝜑 → ¬ 𝑘 ∈ (𝐴 smul 𝐵)) |
45 | 44 | eq0rdv 4338 |
1
⊢ (𝜑 → (𝐴 smul 𝐵) = ∅) |