Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Visualization version   GIF version

Theorem heiborlem10 35113
Description: Lemma for heibor 35114. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 35104, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem10 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Distinct variable groups:   𝑦,𝑛,𝑢,𝐹   𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem10
Dummy variables 𝑡 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
2 0nn0 11913 . . . . . . . 8 0 ∈ ℕ0
3 inss2 4206 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
4 ffvelrn 6849 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ (𝒫 𝑋 ∩ Fin))
53, 4sseldi 3965 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ Fin)
61, 2, 5sylancl 588 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ Fin)
7 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
8 fveq2 6670 . . . . . . . . . . . 12 (𝑛 = 0 → (𝐹𝑛) = (𝐹‘0))
9 oveq2 7164 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑦𝐵𝑛) = (𝑦𝐵0))
108, 9iuneq12d 4947 . . . . . . . . . . 11 (𝑛 = 0 → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1110eqeq2d 2832 . . . . . . . . . 10 (𝑛 = 0 → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)))
1211rspccva 3622 . . . . . . . . 9 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ 0 ∈ ℕ0) → 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
137, 2, 12sylancl 588 . . . . . . . 8 (𝜑𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
14 eqimss 4023 . . . . . . . 8 (𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) → 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1513, 14syl 17 . . . . . . 7 (𝜑𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
16 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . . 10 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 ovex 7189 . . . . . . . . . 10 (𝑦𝐵0) ∈ V
1916, 17, 18heiborlem1 35104 . . . . . . . . 9 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾)
20 oveq1 7163 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐵0) = (𝑥𝐵0))
2120eleq1d 2897 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐵0) ∈ 𝐾 ↔ (𝑥𝐵0) ∈ 𝐾))
2221cbvrexvw 3450 . . . . . . . . 9 (∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾 ↔ ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
2319, 22sylib 220 . . . . . . . 8 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
24233expia 1117 . . . . . . 7 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
256, 15, 24syl2anc 586 . . . . . 6 (𝜑 → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
2625adantr 483 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
27 heibor.4 . . . . . . . . . 10 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
28 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
29 c0ex 10635 . . . . . . . . . 10 0 ∈ V
3016, 17, 27, 28, 29heiborlem2 35105 . . . . . . . . 9 (𝑥𝐺0 ↔ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾))
31 heibor.5 . . . . . . . . . . . 12 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
32 heibor.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (CMet‘𝑋))
3316, 17, 27, 31, 32, 1, 7heiborlem3 35106 . . . . . . . . . . 11 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3433ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3532ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐷 ∈ (CMet‘𝑋))
361ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
377ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
38 simprr 771 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
39 fveq2 6670 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
40 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (2nd𝑥) = (2nd𝑡))
4140oveq1d 7171 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((2nd𝑥) + 1) = ((2nd𝑡) + 1))
4239, 41breq12d 5079 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → ((𝑔𝑥)𝐺((2nd𝑥) + 1) ↔ (𝑔𝑡)𝐺((2nd𝑡) + 1)))
43 fveq2 6670 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝐵𝑥) = (𝐵𝑡))
4439, 41oveq12d 7174 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑔𝑥)𝐵((2nd𝑥) + 1)) = ((𝑔𝑡)𝐵((2nd𝑡) + 1)))
4543, 44ineq12d 4190 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) = ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))))
4645eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4742, 46anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾)))
4847cbvralvw 3449 . . . . . . . . . . . . . 14 (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4938, 48sylib 220 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
50 simprl 769 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑥𝐺0)
51 eqeq1 2825 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 = 0 ↔ 𝑚 = 0))
52 oveq1 7163 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 − 1) = (𝑚 − 1))
5351, 52ifbieq2d 4492 . . . . . . . . . . . . . . 15 (𝑔 = 𝑚 → if(𝑔 = 0, 𝑥, (𝑔 − 1)) = if(𝑚 = 0, 𝑥, (𝑚 − 1)))
5453cbvmptv 5169 . . . . . . . . . . . . . 14 (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))
55 seqeq3 13375 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))) → seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))))
5654, 55ax-mp 5 . . . . . . . . . . . . 13 seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))))
57 eqid 2821 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩) = (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩)
58 simplrl 775 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈𝐽)
59 cmetmet 23889 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
60 metxmet 22944 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6116mopnuni 23051 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
6232, 59, 60, 614syl 19 . . . . . . . . . . . . . . . 16 (𝜑𝑋 = 𝐽)
6362adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑋 = 𝐽)
64 simprr 771 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝐽 = 𝑈)
6563, 64eqtr2d 2857 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈 = 𝑋)
6665adantr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈 = 𝑋)
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 35112 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ¬ 𝑋𝐾)
6867expr 459 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
6968exlimdv 1934 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
7034, 69mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ¬ 𝑋𝐾)
7130, 70sylan2br 596 . . . . . . . 8 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾)) → ¬ 𝑋𝐾)
72713exp2 1350 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (0 ∈ ℕ0 → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))))
732, 72mpi 20 . . . . . 6 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾)))
7473rexlimdv 3283 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))
7526, 74syld 47 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ¬ 𝑋𝐾))
7675pm2.01d 192 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ¬ 𝑋𝐾)
77 elfvdm 6702 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
78 sseq1 3992 . . . . . . . . 9 (𝑢 = 𝑋 → (𝑢 𝑣𝑋 𝑣))
7978rexbidv 3297 . . . . . . . 8 (𝑢 = 𝑋 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8079notbid 320 . . . . . . 7 (𝑢 = 𝑋 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8180, 17elab2g 3668 . . . . . 6 (𝑋 ∈ dom CMet → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8232, 77, 813syl 18 . . . . 5 (𝜑 → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8382adantr 483 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8483con2bid 357 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ¬ 𝑋𝐾))
8576, 84mpbird 259 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣)
8662ad2antrr 724 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑋 = 𝐽)
8786sseq1d 3998 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 𝑣))
88 inss1 4205 . . . . . . . . 9 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
8988sseli 3963 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣 ∈ 𝒫 𝑈)
9089elpwid 4550 . . . . . . 7 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣𝑈)
91 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈𝐽)
92 sstr 3975 . . . . . . . 8 ((𝑣𝑈𝑈𝐽) → 𝑣𝐽)
9392unissd 4848 . . . . . . 7 ((𝑣𝑈𝑈𝐽) → 𝑣 𝐽)
9490, 91, 93syl2anr 598 . . . . . 6 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑣 𝐽)
9594biantrud 534 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽)))
96 eqss 3982 . . . . 5 ( 𝐽 = 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽))
9795, 96syl6bbr 291 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 𝐽 = 𝑣))
9887, 97bitrd 281 . . 3 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 = 𝑣))
9998rexbidva 3296 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣))
10085, 99mpbid 234 1 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  cin 3935  wss 3936  ifcif 4467  𝒫 cpw 4539  cop 4573   cuni 4838   ciun 4919   class class class wbr 5066  {copab 5128  cmpt 5146  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  2nd c2nd 7688  Fincfn 8509  0cc0 10537  1c1 10538   + caddc 10540  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  0cn0 11898  seqcseq 13370  cexp 13430  ∞Metcxmet 20530  Metcmet 20531  ballcbl 20532  MetOpencmopn 20535  CMetccmet 23857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-acn 9371  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-icc 12746  df-fl 13163  df-seq 13371  df-exp 13431  df-rest 16696  df-topgen 16717  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lm 21837  df-haus 21923  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-cfil 23858  df-cau 23859  df-cmet 23860
This theorem is referenced by:  heibor  35114
  Copyright terms: Public domain W3C validator