Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Visualization version   GIF version

Theorem heiborlem10 35715
Description: Lemma for heibor 35716. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 35706, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem10 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Distinct variable groups:   𝑦,𝑛,𝑢,𝐹   𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem10
Dummy variables 𝑡 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
2 0nn0 12105 . . . . . . . 8 0 ∈ ℕ0
3 inss2 4144 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
4 ffvelrn 6902 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ (𝒫 𝑋 ∩ Fin))
53, 4sseldi 3899 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ Fin)
61, 2, 5sylancl 589 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ Fin)
7 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
8 fveq2 6717 . . . . . . . . . . . 12 (𝑛 = 0 → (𝐹𝑛) = (𝐹‘0))
9 oveq2 7221 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑦𝐵𝑛) = (𝑦𝐵0))
108, 9iuneq12d 4932 . . . . . . . . . . 11 (𝑛 = 0 → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1110eqeq2d 2748 . . . . . . . . . 10 (𝑛 = 0 → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)))
1211rspccva 3536 . . . . . . . . 9 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ 0 ∈ ℕ0) → 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
137, 2, 12sylancl 589 . . . . . . . 8 (𝜑𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
14 eqimss 3957 . . . . . . . 8 (𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) → 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1513, 14syl 17 . . . . . . 7 (𝜑𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
16 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . . 10 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 ovex 7246 . . . . . . . . . 10 (𝑦𝐵0) ∈ V
1916, 17, 18heiborlem1 35706 . . . . . . . . 9 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾)
20 oveq1 7220 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐵0) = (𝑥𝐵0))
2120eleq1d 2822 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐵0) ∈ 𝐾 ↔ (𝑥𝐵0) ∈ 𝐾))
2221cbvrexvw 3359 . . . . . . . . 9 (∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾 ↔ ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
2319, 22sylib 221 . . . . . . . 8 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
24233expia 1123 . . . . . . 7 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
256, 15, 24syl2anc 587 . . . . . 6 (𝜑 → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
2625adantr 484 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
27 heibor.4 . . . . . . . . . 10 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
28 vex 3412 . . . . . . . . . 10 𝑥 ∈ V
29 c0ex 10827 . . . . . . . . . 10 0 ∈ V
3016, 17, 27, 28, 29heiborlem2 35707 . . . . . . . . 9 (𝑥𝐺0 ↔ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾))
31 heibor.5 . . . . . . . . . . . 12 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
32 heibor.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (CMet‘𝑋))
3316, 17, 27, 31, 32, 1, 7heiborlem3 35708 . . . . . . . . . . 11 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3433ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3532ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐷 ∈ (CMet‘𝑋))
361ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
377ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
38 simprr 773 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
39 fveq2 6717 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
40 fveq2 6717 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (2nd𝑥) = (2nd𝑡))
4140oveq1d 7228 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((2nd𝑥) + 1) = ((2nd𝑡) + 1))
4239, 41breq12d 5066 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → ((𝑔𝑥)𝐺((2nd𝑥) + 1) ↔ (𝑔𝑡)𝐺((2nd𝑡) + 1)))
43 fveq2 6717 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝐵𝑥) = (𝐵𝑡))
4439, 41oveq12d 7231 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑔𝑥)𝐵((2nd𝑥) + 1)) = ((𝑔𝑡)𝐵((2nd𝑡) + 1)))
4543, 44ineq12d 4128 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) = ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))))
4645eleq1d 2822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4742, 46anbi12d 634 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾)))
4847cbvralvw 3358 . . . . . . . . . . . . . 14 (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4938, 48sylib 221 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
50 simprl 771 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑥𝐺0)
51 eqeq1 2741 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 = 0 ↔ 𝑚 = 0))
52 oveq1 7220 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 − 1) = (𝑚 − 1))
5351, 52ifbieq2d 4465 . . . . . . . . . . . . . . 15 (𝑔 = 𝑚 → if(𝑔 = 0, 𝑥, (𝑔 − 1)) = if(𝑚 = 0, 𝑥, (𝑚 − 1)))
5453cbvmptv 5158 . . . . . . . . . . . . . 14 (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))
55 seqeq3 13579 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))) → seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))))
5654, 55ax-mp 5 . . . . . . . . . . . . 13 seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))))
57 eqid 2737 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩) = (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩)
58 simplrl 777 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈𝐽)
59 cmetmet 24183 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
60 metxmet 23232 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6116mopnuni 23339 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
6232, 59, 60, 614syl 19 . . . . . . . . . . . . . . . 16 (𝜑𝑋 = 𝐽)
6362adantr 484 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑋 = 𝐽)
64 simprr 773 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝐽 = 𝑈)
6563, 64eqtr2d 2778 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈 = 𝑋)
6665adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈 = 𝑋)
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 35714 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ¬ 𝑋𝐾)
6867expr 460 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
6968exlimdv 1941 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
7034, 69mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ¬ 𝑋𝐾)
7130, 70sylan2br 598 . . . . . . . 8 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾)) → ¬ 𝑋𝐾)
72713exp2 1356 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (0 ∈ ℕ0 → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))))
732, 72mpi 20 . . . . . 6 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾)))
7473rexlimdv 3202 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))
7526, 74syld 47 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ¬ 𝑋𝐾))
7675pm2.01d 193 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ¬ 𝑋𝐾)
77 elfvdm 6749 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
78 sseq1 3926 . . . . . . . . 9 (𝑢 = 𝑋 → (𝑢 𝑣𝑋 𝑣))
7978rexbidv 3216 . . . . . . . 8 (𝑢 = 𝑋 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8079notbid 321 . . . . . . 7 (𝑢 = 𝑋 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8180, 17elab2g 3589 . . . . . 6 (𝑋 ∈ dom CMet → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8232, 77, 813syl 18 . . . . 5 (𝜑 → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8382adantr 484 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8483con2bid 358 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ¬ 𝑋𝐾))
8576, 84mpbird 260 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣)
8662ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑋 = 𝐽)
8786sseq1d 3932 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 𝑣))
88 inss1 4143 . . . . . . . . 9 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
8988sseli 3896 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣 ∈ 𝒫 𝑈)
9089elpwid 4524 . . . . . . 7 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣𝑈)
91 simprl 771 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈𝐽)
92 sstr 3909 . . . . . . . 8 ((𝑣𝑈𝑈𝐽) → 𝑣𝐽)
9392unissd 4829 . . . . . . 7 ((𝑣𝑈𝑈𝐽) → 𝑣 𝐽)
9490, 91, 93syl2anr 600 . . . . . 6 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑣 𝐽)
9594biantrud 535 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽)))
96 eqss 3916 . . . . 5 ( 𝐽 = 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽))
9795, 96bitr4di 292 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 𝐽 = 𝑣))
9887, 97bitrd 282 . . 3 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 = 𝑣))
9998rexbidva 3215 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣))
10085, 99mpbid 235 1 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110  {cab 2714  wral 3061  wrex 3062  cin 3865  wss 3866  ifcif 4439  𝒫 cpw 4513  cop 4547   cuni 4819   ciun 4904   class class class wbr 5053  {copab 5115  cmpt 5135  dom cdm 5551  wf 6376  cfv 6380  (class class class)co 7213  cmpo 7215  2nd c2nd 7760  Fincfn 8626  0cc0 10729  1c1 10730   + caddc 10732  cmin 11062   / cdiv 11489  cn 11830  2c2 11885  3c3 11886  0cn0 12090  seqcseq 13574  cexp 13635  ∞Metcxmet 20348  Metcmet 20349  ballcbl 20350  MetOpencmopn 20353  CMetccmet 24151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256  ax-cc 10049  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-oi 9126  df-card 9555  df-acn 9558  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-n0 12091  df-z 12177  df-uz 12439  df-q 12545  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-ico 12941  df-icc 12942  df-fl 13367  df-seq 13575  df-exp 13636  df-rest 16927  df-topgen 16948  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-mopn 20359  df-fbas 20360  df-fg 20361  df-top 21791  df-topon 21808  df-bases 21843  df-cld 21916  df-ntr 21917  df-cls 21918  df-nei 21995  df-lm 22126  df-haus 22212  df-fil 22743  df-fm 22835  df-flim 22836  df-flf 22837  df-cfil 24152  df-cau 24153  df-cmet 24154
This theorem is referenced by:  heibor  35716
  Copyright terms: Public domain W3C validator