Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem10 Structured version   Visualization version   GIF version

Theorem heiborlem10 37820
Description: Lemma for heibor 37821. The last remaining piece of the proof is to find an element 𝐶 such that 𝐶𝐺0, i.e. 𝐶 is an element of (𝐹‘0) that has no finite subcover, which is true by heiborlem1 37811, since (𝐹‘0) is a finite cover of 𝑋, which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of 𝑈 that covers 𝑋, i.e. 𝑋 is compact. (Contributed by Jeff Madsen, 22-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
Assertion
Ref Expression
heiborlem10 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Distinct variable groups:   𝑦,𝑛,𝑢,𝐹   𝑚,𝑛,𝑢,𝑣,𝑦,𝑧,𝐷   𝐵,𝑛,𝑢,𝑣,𝑦   𝑚,𝐽,𝑛,𝑢,𝑣,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑦,𝑧   𝑚,𝑋,𝑛,𝑢,𝑣,𝑦,𝑧   𝑛,𝐾,𝑦,𝑧   𝜑,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑚)   𝑈(𝑚)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐾(𝑣,𝑢,𝑚)

Proof of Theorem heiborlem10
Dummy variables 𝑡 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 heibor.7 . . . . . . . 8 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
2 0nn0 12399 . . . . . . . 8 0 ∈ ℕ0
3 inss2 4189 . . . . . . . . 9 (𝒫 𝑋 ∩ Fin) ⊆ Fin
4 ffvelcdm 7015 . . . . . . . . 9 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ (𝒫 𝑋 ∩ Fin))
53, 4sselid 3933 . . . . . . . 8 ((𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin) ∧ 0 ∈ ℕ0) → (𝐹‘0) ∈ Fin)
61, 2, 5sylancl 586 . . . . . . 7 (𝜑 → (𝐹‘0) ∈ Fin)
7 heibor.8 . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
8 fveq2 6822 . . . . . . . . . . . 12 (𝑛 = 0 → (𝐹𝑛) = (𝐹‘0))
9 oveq2 7357 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑦𝐵𝑛) = (𝑦𝐵0))
108, 9iuneq12d 4971 . . . . . . . . . . 11 (𝑛 = 0 → 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1110eqeq2d 2740 . . . . . . . . . 10 (𝑛 = 0 → (𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ↔ 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)))
1211rspccva 3576 . . . . . . . . 9 ((∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛) ∧ 0 ∈ ℕ0) → 𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
137, 2, 12sylancl 586 . . . . . . . 8 (𝜑𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
14 eqimss 3994 . . . . . . . 8 (𝑋 = 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) → 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
1513, 14syl 17 . . . . . . 7 (𝜑𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0))
16 heibor.1 . . . . . . . . . 10 𝐽 = (MetOpen‘𝐷)
17 heibor.3 . . . . . . . . . 10 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
18 ovex 7382 . . . . . . . . . 10 (𝑦𝐵0) ∈ V
1916, 17, 18heiborlem1 37811 . . . . . . . . 9 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾)
20 oveq1 7356 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝑦𝐵0) = (𝑥𝐵0))
2120eleq1d 2813 . . . . . . . . . 10 (𝑦 = 𝑥 → ((𝑦𝐵0) ∈ 𝐾 ↔ (𝑥𝐵0) ∈ 𝐾))
2221cbvrexvw 3208 . . . . . . . . 9 (∃𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∈ 𝐾 ↔ ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
2319, 22sylib 218 . . . . . . . 8 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0) ∧ 𝑋𝐾) → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾)
24233expia 1121 . . . . . . 7 (((𝐹‘0) ∈ Fin ∧ 𝑋 𝑦 ∈ (𝐹‘0)(𝑦𝐵0)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
256, 15, 24syl2anc 584 . . . . . 6 (𝜑 → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
2625adantr 480 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾))
27 heibor.4 . . . . . . . . . 10 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
28 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
29 c0ex 11109 . . . . . . . . . 10 0 ∈ V
3016, 17, 27, 28, 29heiborlem2 37812 . . . . . . . . 9 (𝑥𝐺0 ↔ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾))
31 heibor.5 . . . . . . . . . . . 12 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
32 heibor.6 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (CMet‘𝑋))
3316, 17, 27, 31, 32, 1, 7heiborlem3 37813 . . . . . . . . . . 11 (𝜑 → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3433ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
3532ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐷 ∈ (CMet‘𝑋))
361ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
377ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
38 simprr 772 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
39 fveq2 6822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → (𝑔𝑥) = (𝑔𝑡))
40 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (2nd𝑥) = (2nd𝑡))
4140oveq1d 7364 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((2nd𝑥) + 1) = ((2nd𝑡) + 1))
4239, 41breq12d 5105 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → ((𝑔𝑥)𝐺((2nd𝑥) + 1) ↔ (𝑔𝑡)𝐺((2nd𝑡) + 1)))
43 fveq2 6822 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → (𝐵𝑥) = (𝐵𝑡))
4439, 41oveq12d 7367 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑡 → ((𝑔𝑥)𝐵((2nd𝑥) + 1)) = ((𝑔𝑡)𝐵((2nd𝑡) + 1)))
4543, 44ineq12d 4172 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑡 → ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) = ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))))
4645eleq1d 2813 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑡 → (((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾 ↔ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4742, 46anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾)))
4847cbvralvw 3207 . . . . . . . . . . . . . 14 (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) ↔ ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
4938, 48sylib 218 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ∀𝑡𝐺 ((𝑔𝑡)𝐺((2nd𝑡) + 1) ∧ ((𝐵𝑡) ∩ ((𝑔𝑡)𝐵((2nd𝑡) + 1))) ∈ 𝐾))
50 simprl 770 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑥𝐺0)
51 eqeq1 2733 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 = 0 ↔ 𝑚 = 0))
52 oveq1 7356 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑚 → (𝑔 − 1) = (𝑚 − 1))
5351, 52ifbieq2d 4503 . . . . . . . . . . . . . . 15 (𝑔 = 𝑚 → if(𝑔 = 0, 𝑥, (𝑔 − 1)) = if(𝑚 = 0, 𝑥, (𝑚 − 1)))
5453cbvmptv 5196 . . . . . . . . . . . . . 14 (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))
55 seqeq3 13913 . . . . . . . . . . . . . 14 ((𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))) = (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))) → seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1)))))
5654, 55ax-mp 5 . . . . . . . . . . . . 13 seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1)))) = seq0(𝑔, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝑥, (𝑚 − 1))))
57 eqid 2729 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩) = (𝑛 ∈ ℕ ↦ ⟨(seq0(𝑔, (𝑔 ∈ ℕ0 ↦ if(𝑔 = 0, 𝑥, (𝑔 − 1))))‘𝑛), (3 / (2↑𝑛))⟩)
58 simplrl 776 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈𝐽)
59 cmetmet 25184 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
60 metxmet 24220 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
6116mopnuni 24327 . . . . . . . . . . . . . . . . 17 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
6232, 59, 60, 614syl 19 . . . . . . . . . . . . . . . 16 (𝜑𝑋 = 𝐽)
6362adantr 480 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑋 = 𝐽)
64 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝐽 = 𝑈)
6563, 64eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈 = 𝑋)
6665adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → 𝑈 = 𝑋)
6716, 17, 27, 31, 35, 36, 37, 49, 50, 56, 57, 58, 66heiborlem9 37819 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (𝑥𝐺0 ∧ ∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))) → ¬ 𝑋𝐾)
6867expr 456 . . . . . . . . . . 11 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∀𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
6968exlimdv 1933 . . . . . . . . . 10 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → (∃𝑔𝑥𝐺 ((𝑔𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑔𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾) → ¬ 𝑋𝐾))
7034, 69mpd 15 . . . . . . . . 9 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑥𝐺0) → ¬ 𝑋𝐾)
7130, 70sylan2br 595 . . . . . . . 8 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ (0 ∈ ℕ0𝑥 ∈ (𝐹‘0) ∧ (𝑥𝐵0) ∈ 𝐾)) → ¬ 𝑋𝐾)
72713exp2 1355 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (0 ∈ ℕ0 → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))))
732, 72mpi 20 . . . . . 6 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑥 ∈ (𝐹‘0) → ((𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾)))
7473rexlimdv 3128 . . . . 5 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑥 ∈ (𝐹‘0)(𝑥𝐵0) ∈ 𝐾 → ¬ 𝑋𝐾))
7526, 74syld 47 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 → ¬ 𝑋𝐾))
7675pm2.01d 190 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ¬ 𝑋𝐾)
77 elfvdm 6857 . . . . . 6 (𝐷 ∈ (CMet‘𝑋) → 𝑋 ∈ dom CMet)
78 sseq1 3961 . . . . . . . . 9 (𝑢 = 𝑋 → (𝑢 𝑣𝑋 𝑣))
7978rexbidv 3153 . . . . . . . 8 (𝑢 = 𝑋 → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8079notbid 318 . . . . . . 7 (𝑢 = 𝑋 → (¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8180, 17elab2g 3636 . . . . . 6 (𝑋 ∈ dom CMet → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8232, 77, 813syl 18 . . . . 5 (𝜑 → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8382adantr 480 . . . 4 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (𝑋𝐾 ↔ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣))
8483con2bid 354 . . 3 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ¬ 𝑋𝐾))
8576, 84mpbird 257 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣)
8662ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑋 = 𝐽)
8786sseq1d 3967 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 𝑣))
88 inss1 4188 . . . . . . . . 9 (𝒫 𝑈 ∩ Fin) ⊆ 𝒫 𝑈
8988sseli 3931 . . . . . . . 8 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣 ∈ 𝒫 𝑈)
9089elpwid 4560 . . . . . . 7 (𝑣 ∈ (𝒫 𝑈 ∩ Fin) → 𝑣𝑈)
91 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → 𝑈𝐽)
92 sstr 3944 . . . . . . . 8 ((𝑣𝑈𝑈𝐽) → 𝑣𝐽)
9392unissd 4868 . . . . . . 7 ((𝑣𝑈𝑈𝐽) → 𝑣 𝐽)
9490, 91, 93syl2anr 597 . . . . . 6 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → 𝑣 𝐽)
9594biantrud 531 . . . . 5 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽)))
96 eqss 3951 . . . . 5 ( 𝐽 = 𝑣 ↔ ( 𝐽 𝑣 𝑣 𝐽))
9795, 96bitr4di 289 . . . 4 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → ( 𝐽 𝑣 𝐽 = 𝑣))
9887, 97bitrd 279 . . 3 (((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) ∧ 𝑣 ∈ (𝒫 𝑈 ∩ Fin)) → (𝑋 𝑣 𝐽 = 𝑣))
9998rexbidva 3151 . 2 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → (∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑋 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣))
10085, 99mpbid 232 1 ((𝜑 ∧ (𝑈𝐽 𝐽 = 𝑈)) → ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin) 𝐽 = 𝑣)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  wrex 3053  cin 3902  wss 3903  ifcif 4476  𝒫 cpw 4551  cop 4583   cuni 4858   ciun 4941   class class class wbr 5092  {copab 5154  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  cmpo 7351  2nd c2nd 7923  Fincfn 8872  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347   / cdiv 11777  cn 12128  2c2 12183  3c3 12184  0cn0 12384  seqcseq 13908  cexp 13968  ∞Metcxmet 21246  Metcmet 21247  ballcbl 21248  MetOpencmopn 21251  CMetccmet 25152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cc 10329  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ico 13254  df-icc 13255  df-fl 13696  df-seq 13909  df-exp 13969  df-rest 17326  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-top 22779  df-topon 22796  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lm 23114  df-haus 23200  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-cfil 25153  df-cau 25154  df-cmet 25155
This theorem is referenced by:  heibor  37821
  Copyright terms: Public domain W3C validator