MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem5 Structured version   Visualization version   GIF version

Theorem rpnnen1lem5 12381
Description: Lemma for rpnnen1 12383. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem5 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.1 . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
2 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
3 rpnnen1lem.n . . . 4 ℕ ∈ V
4 rpnnen1lem.q . . . 4 ℚ ∈ V
51, 2, 3, 4rpnnen1lem3 12379 . . 3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
61, 2, 3, 4rpnnen1lem1 12378 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
74, 3elmap 8435 . . . . . 6 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
86, 7sylib 220 . . . . 5 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
9 frn 6520 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℚ)
10 qssre 12359 . . . . . 6 ℚ ⊆ ℝ
119, 10sstrdi 3979 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℝ)
128, 11syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ⊆ ℝ)
13 1nn 11649 . . . . . . . 8 1 ∈ ℕ
1413ne0ii 4303 . . . . . . 7 ℕ ≠ ∅
15 fdm 6522 . . . . . . . 8 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) = ℕ)
1615neeq1d 3075 . . . . . . 7 ((𝐹𝑥):ℕ⟶ℚ → (dom (𝐹𝑥) ≠ ∅ ↔ ℕ ≠ ∅))
1714, 16mpbiri 260 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) ≠ ∅)
18 dm0rn0 5795 . . . . . . 7 (dom (𝐹𝑥) = ∅ ↔ ran (𝐹𝑥) = ∅)
1918necon3bii 3068 . . . . . 6 (dom (𝐹𝑥) ≠ ∅ ↔ ran (𝐹𝑥) ≠ ∅)
2017, 19sylib 220 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ≠ ∅)
218, 20syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ≠ ∅)
22 breq2 5070 . . . . . . 7 (𝑦 = 𝑥 → (𝑛𝑦𝑛𝑥))
2322ralbidv 3197 . . . . . 6 (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2423rspcev 3623 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
255, 24mpdan 685 . . . 4 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
26 id 22 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
27 suprleub 11607 . . . 4 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2812, 21, 25, 26, 27syl31anc 1369 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
295, 28mpbird 259 . 2 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥)
301, 2, 3, 4rpnnen1lem4 12380 . . . . . . . . 9 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
31 resubcl 10950 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3230, 31mpdan 685 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3332adantr 483 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
34 posdif 11133 . . . . . . . . . 10 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3530, 34mpancom 686 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3635biimpa 479 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )))
3736gt0ne0d 11204 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ≠ 0)
3833, 37rereccld 11467 . . . . . 6 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ)
39 arch 11895 . . . . . 6 ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4038, 39syl 17 . . . . 5 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4140ex 415 . . . 4 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘))
421, 2rpnnen1lem2 12377 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
4342zred 12088 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
44433adant3 1128 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) ∈ ℝ)
4544ltp1d 11570 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))
4633, 36jca 514 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
47 nnre 11645 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
48 nngt0 11669 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
4947, 48jca 514 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
50 ltrec1 11527 . . . . . . . . . . . . 13 ((((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5146, 49, 50syl2an 597 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5230ad2antrr 724 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
53 nnrecre 11680 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
5453adantl 484 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
55 simpll 765 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5652, 54, 55ltaddsub2d 11241 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5712adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ran (𝐹𝑥) ⊆ ℝ)
58 ffn 6514 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
598, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) Fn ℕ)
60 fnfvelrn 6848 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6159, 60sylan 582 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6257, 61sseldd 3968 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ℝ)
6330adantr 483 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
6453adantl 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6512, 21, 253jca 1124 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
6665adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
67 suprub 11602 . . . . . . . . . . . . . . . . 17 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥)) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6866, 61, 67syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6962, 63, 64, 68leadd1dd 11254 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)))
7062, 64readdcld 10670 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ)
71 readdcl 10620 . . . . . . . . . . . . . . . . 17 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
7230, 53, 71syl2an 597 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
73 simpl 485 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
74 lelttr 10731 . . . . . . . . . . . . . . . . 17 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7574expd 418 . . . . . . . . . . . . . . . 16 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7670, 72, 73, 75syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7769, 76mpd 15 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7877adantlr 713 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7956, 78sylbird 262 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8051, 79sylbid 242 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8142peano2zd 12091 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℤ)
82 oveq1 7163 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → (𝑛 / 𝑘) = ((sup(𝑇, ℝ, < ) + 1) / 𝑘))
8382breq1d 5076 . . . . . . . . . . . . . . . . . 18 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → ((𝑛 / 𝑘) < 𝑥 ↔ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8483, 1elrab2 3683 . . . . . . . . . . . . . . . . 17 ((sup(𝑇, ℝ, < ) + 1) ∈ 𝑇 ↔ ((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8584biimpri 230 . . . . . . . . . . . . . . . 16 (((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
8681, 85sylan 582 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
87 ssrab2 4056 . . . . . . . . . . . . . . . . . . . 20 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
881, 87eqsstri 4001 . . . . . . . . . . . . . . . . . . 19 𝑇 ⊆ ℤ
89 zssre 11989 . . . . . . . . . . . . . . . . . . 19 ℤ ⊆ ℝ
9088, 89sstri 3976 . . . . . . . . . . . . . . . . . 18 𝑇 ⊆ ℝ
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
92 remulcl 10622 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9392ancoms 461 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9447, 93sylan2 594 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
95 btwnz 12085 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
9695simpld 497 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
98 zre 11986 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
9998adantl 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
100 simpll 765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
10149ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
102 ltdivmul 11515 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
10399, 100, 101, 102syl3anc 1367 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
104103rexbidva 3296 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
10597, 104mpbird 259 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
106 rabn0 4339 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
107105, 106sylibr 236 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
1081neeq1i 3080 . . . . . . . . . . . . . . . . . 18 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
109107, 108sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
1101rabeq2i 3487 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
11147ad2antlr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
112111, 100, 92syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
113 ltle 10729 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
11499, 112, 113syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
115103, 114sylbid 242 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
116115impr 457 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
117110, 116sylan2b 595 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
118117ralrimiva 3182 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
119 breq2 5070 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
120119ralbidv 3197 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
121120rspcev 3623 . . . . . . . . . . . . . . . . . 18 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12294, 118, 121syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12391, 109, 1223jca 1124 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦))
124 suprub 11602 . . . . . . . . . . . . . . . 16 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
125123, 124sylan 582 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
12686, 125syldan 593 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
127126ex 415 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < )))
12842zcnd 12089 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℂ)
129 1cnd 10636 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
130 nncn 11646 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
131 nnne0 11672 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
132130, 131jca 514 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
133132adantl 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
134 divdir 11323 . . . . . . . . . . . . . . . 16 ((sup(𝑇, ℝ, < ) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
135128, 129, 133, 134syl3anc 1367 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
1363mptex 6986 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
1372fvmpt2 6779 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
138136, 137mpan2 689 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
139138fveq1d 6672 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
140 ovex 7189 . . . . . . . . . . . . . . . . . 18 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
141 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
142141fvmpt2 6779 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
143140, 142mpan2 689 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
144139, 143sylan9eq 2876 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
145144oveq1d 7171 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
146135, 145eqtr4d 2859 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = (((𝐹𝑥)‘𝑘) + (1 / 𝑘)))
147146breq1d 5076 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 ↔ (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
14881zred 12088 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
149148, 43lenltd 10786 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ) ↔ ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
150127, 147, 1493imtr3d 295 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
151150adantlr 713 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15280, 151syld 47 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
153152exp31 422 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
154153com4l 92 . . . . . . . 8 (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (𝑥 ∈ ℝ → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
155154com14 96 . . . . . . 7 (𝑥 ∈ ℝ → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
1561553imp 1107 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15745, 156mt2d 138 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
158157rexlimdv3a 3286 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
15941, 158syld 47 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
160159pm2.01d 192 . 2 (𝑥 ∈ ℝ → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
161 eqlelt 10728 . . 3 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16230, 161mpancom 686 . 2 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16329, 160, 162mpbir2and 711 1 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  {crab 3142  Vcvv 3494  wss 3936  c0 4291   class class class wbr 5066  cmpt 5146  dom cdm 5555  ran crn 5556   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  supcsup 8904  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  cz 11982  cq 12349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-q 12350
This theorem is referenced by:  rpnnen1lem6  12382
  Copyright terms: Public domain W3C validator