Step | Hyp | Ref
| Expression |
1 | | rpnnen1lem.1 |
. . . 4
⊢ 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} |
2 | | rpnnen1lem.2 |
. . . 4
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
3 | | rpnnen1lem.n |
. . . 4
⊢ ℕ
∈ V |
4 | | rpnnen1lem.q |
. . . 4
⊢ ℚ
∈ V |
5 | 1, 2, 3, 4 | rpnnen1lem3 12648 |
. . 3
⊢ (𝑥 ∈ ℝ →
∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) |
6 | 1, 2, 3, 4 | rpnnen1lem1 12647 |
. . . . . 6
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) ∈ (ℚ ↑m
ℕ)) |
7 | 4, 3 | elmap 8617 |
. . . . . 6
⊢ ((𝐹‘𝑥) ∈ (ℚ ↑m ℕ)
↔ (𝐹‘𝑥):ℕ⟶ℚ) |
8 | 6, 7 | sylib 217 |
. . . . 5
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥):ℕ⟶ℚ) |
9 | | frn 6591 |
. . . . . 6
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℚ) |
10 | | qssre 12628 |
. . . . . 6
⊢ ℚ
⊆ ℝ |
11 | 9, 10 | sstrdi 3929 |
. . . . 5
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ⊆ ℝ) |
12 | 8, 11 | syl 17 |
. . . 4
⊢ (𝑥 ∈ ℝ → ran
(𝐹‘𝑥) ⊆ ℝ) |
13 | | 1nn 11914 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
14 | 13 | ne0ii 4268 |
. . . . . . 7
⊢ ℕ
≠ ∅ |
15 | | fdm 6593 |
. . . . . . . 8
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) = ℕ) |
16 | 15 | neeq1d 3002 |
. . . . . . 7
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (dom (𝐹‘𝑥) ≠ ∅ ↔ ℕ ≠
∅)) |
17 | 14, 16 | mpbiri 257 |
. . . . . 6
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → dom (𝐹‘𝑥) ≠ ∅) |
18 | | dm0rn0 5823 |
. . . . . . 7
⊢ (dom
(𝐹‘𝑥) = ∅ ↔ ran (𝐹‘𝑥) = ∅) |
19 | 18 | necon3bii 2995 |
. . . . . 6
⊢ (dom
(𝐹‘𝑥) ≠ ∅ ↔ ran (𝐹‘𝑥) ≠ ∅) |
20 | 17, 19 | sylib 217 |
. . . . 5
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → ran (𝐹‘𝑥) ≠ ∅) |
21 | 8, 20 | syl 17 |
. . . 4
⊢ (𝑥 ∈ ℝ → ran
(𝐹‘𝑥) ≠ ∅) |
22 | | breq2 5074 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ 𝑥)) |
23 | 22 | ralbidv 3120 |
. . . . . 6
⊢ (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
24 | 23 | rspcev 3552 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧
∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
25 | 5, 24 | mpdan 683 |
. . . 4
⊢ (𝑥 ∈ ℝ →
∃𝑦 ∈ ℝ
∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) |
26 | | id 22 |
. . . 4
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℝ) |
27 | | suprleub 11871 |
. . . 4
⊢ (((ran
(𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹‘𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
28 | 12, 21, 25, 26, 27 | syl31anc 1371 |
. . 3
⊢ (𝑥 ∈ ℝ → (sup(ran
(𝐹‘𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑥)) |
29 | 5, 28 | mpbird 256 |
. 2
⊢ (𝑥 ∈ ℝ → sup(ran
(𝐹‘𝑥), ℝ, < ) ≤ 𝑥) |
30 | 1, 2, 3, 4 | rpnnen1lem4 12649 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → sup(ran
(𝐹‘𝑥), ℝ, < ) ∈
ℝ) |
31 | | resubcl 11215 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) ∈ ℝ) →
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) ∈
ℝ) |
32 | 30, 31 | mpdan 683 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ → (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) ∈
ℝ) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) ∈
ℝ) |
34 | | posdif 11398 |
. . . . . . . . . 10
⊢ ((sup(ran
(𝐹‘𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )))) |
35 | 30, 34 | mpancom 684 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )))) |
36 | 35 | biimpa 476 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) → 0 < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) |
37 | 36 | gt0ne0d 11469 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) ≠ 0) |
38 | 33, 37 | rereccld 11732 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) → (1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) ∈
ℝ) |
39 | | arch 12160 |
. . . . . 6
⊢ ((1 /
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) ∈ ℝ →
∃𝑘 ∈ ℕ (1
/ (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘) |
40 | 38, 39 | syl 17 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘) |
41 | 40 | ex 412 |
. . . 4
⊢ (𝑥 ∈ ℝ → (sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥 → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘)) |
42 | 1, 2 | rpnnen1lem2 12646 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ ℤ) |
43 | 42 | zred 12355 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ ℝ) |
44 | 43 | 3adant3 1130 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 /
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) ∈
ℝ) |
45 | 44 | ltp1d 11835 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 /
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1)) |
46 | 33, 36 | jca 511 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) → ((𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) ∈ ℝ ∧ 0
< (𝑥 − sup(ran
(𝐹‘𝑥), ℝ, < )))) |
47 | | nnre 11910 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
48 | | nngt0 11934 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ ℕ → 0 <
𝑘) |
49 | 47, 48 | jca 511 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
50 | | ltrec1 11792 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) ∈ ℝ ∧ 0
< (𝑥 − sup(ran
(𝐹‘𝑥), ℝ, < ))) ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → ((1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )))) |
51 | 46, 49, 50 | syl2an 595 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )))) |
52 | 30 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹‘𝑥), ℝ, < ) ∈
ℝ) |
53 | | nnrecre 11945 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ ℕ → (1 /
𝑘) ∈
ℝ) |
54 | 53 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈
ℝ) |
55 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ) |
56 | 52, 54, 55 | ltaddsub2d 11506 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )))) |
57 | 12 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ran
(𝐹‘𝑥) ⊆ ℝ) |
58 | | ffn 6584 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑥):ℕ⟶ℚ → (𝐹‘𝑥) Fn ℕ) |
59 | 8, 58 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) Fn ℕ) |
60 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑥) Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥)‘𝑘) ∈ ran (𝐹‘𝑥)) |
61 | 59, 60 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥)‘𝑘) ∈ ran (𝐹‘𝑥)) |
62 | 57, 61 | sseldd 3918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥)‘𝑘) ∈ ℝ) |
63 | 30 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(ran
(𝐹‘𝑥), ℝ, < ) ∈
ℝ) |
64 | 53 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (1 /
𝑘) ∈
ℝ) |
65 | 12, 21, 25 | 3jca 1126 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → (ran
(𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦)) |
66 | 65 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (ran
(𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦)) |
67 | | suprub 11866 |
. . . . . . . . . . . . . . . . 17
⊢ (((ran
(𝐹‘𝑥) ⊆ ℝ ∧ ran (𝐹‘𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹‘𝑥)𝑛 ≤ 𝑦) ∧ ((𝐹‘𝑥)‘𝑘) ∈ ran (𝐹‘𝑥)) → ((𝐹‘𝑥)‘𝑘) ≤ sup(ran (𝐹‘𝑥), ℝ, < )) |
68 | 66, 61, 67 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥)‘𝑘) ≤ sup(ran (𝐹‘𝑥), ℝ, < )) |
69 | 62, 63, 64, 68 | leadd1dd 11519 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘))) |
70 | 62, 64 | readdcld 10935 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ) |
71 | | readdcl 10885 |
. . . . . . . . . . . . . . . . 17
⊢ ((sup(ran
(𝐹‘𝑥), ℝ, < ) ∈ ℝ ∧ (1 /
𝑘) ∈ ℝ) →
(sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) ∈
ℝ) |
72 | 30, 53, 71 | syl2an 595 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(ran
(𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ) |
73 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈
ℝ) |
74 | | lelttr 10996 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) ∧ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥) → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)) |
75 | 74 | expd 415 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))) |
76 | 70, 72, 73, 75 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))) |
77 | 69, 76 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
((sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)) |
78 | 77 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹‘𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)) |
79 | 56, 78 | sylbird 259 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < )) → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)) |
80 | 51, 79 | sylbid 239 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)) |
81 | 42 | peano2zd 12358 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(sup(𝑇, ℝ, < ) +
1) ∈ ℤ) |
82 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = (sup(𝑇, ℝ, < ) + 1) → (𝑛 / 𝑘) = ((sup(𝑇, ℝ, < ) + 1) / 𝑘)) |
83 | 82 | breq1d 5080 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = (sup(𝑇, ℝ, < ) + 1) → ((𝑛 / 𝑘) < 𝑥 ↔ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥)) |
84 | 83, 1 | elrab2 3620 |
. . . . . . . . . . . . . . . . 17
⊢
((sup(𝑇, ℝ,
< ) + 1) ∈ 𝑇 ↔
((sup(𝑇, ℝ, < ) +
1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥)) |
85 | 84 | biimpri 227 |
. . . . . . . . . . . . . . . 16
⊢
(((sup(𝑇, ℝ,
< ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) |
86 | 81, 85 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧
((sup(𝑇, ℝ, < ) +
1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) |
87 | | ssrab2 4009 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ |
88 | 1, 87 | eqsstri 3951 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑇 ⊆
ℤ |
89 | | zssre 12256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ℤ
⊆ ℝ |
90 | 88, 89 | sstri 3926 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑇 ⊆
ℝ |
91 | 90 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆
ℝ) |
92 | | remulcl 10887 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
93 | 92 | ancoms 458 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ) |
94 | 47, 93 | sylan2 592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ) |
95 | | btwnz 12352 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛)) |
96 | 95 | simpld 494 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)) |
97 | 94, 96 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
𝑛 < (𝑘 · 𝑥)) |
98 | | zre 12253 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 ∈ ℤ → 𝑛 ∈
ℝ) |
99 | 98 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈
ℝ) |
100 | | simpll 763 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈
ℝ) |
101 | 49 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 <
𝑘)) |
102 | | ltdivmul 11780 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 <
𝑘)) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
103 | 99, 100, 101, 102 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 ↔ 𝑛 < (𝑘 · 𝑥))) |
104 | 103 | rexbidva 3224 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))) |
105 | 97, 104 | mpbird 256 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑛 ∈ ℤ
(𝑛 / 𝑘) < 𝑥) |
106 | | rabn0 4316 |
. . . . . . . . . . . . . . . . . . 19
⊢ ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥) |
107 | 105, 106 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
108 | 1 | neeq1i 3007 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅) |
109 | 107, 108 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅) |
110 | 1 | rabeq2i 3412 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑛 ∈ 𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) |
111 | 47 | ad2antlr 723 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈
ℝ) |
112 | 111, 100,
92 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ) |
113 | | ltle 10994 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
114 | 99, 112, 113 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥))) |
115 | 103, 114 | sylbid 239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥 → 𝑛 ≤ (𝑘 · 𝑥))) |
116 | 115 | impr 454 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥)) |
117 | 110, 116 | sylan2b 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ 𝑇) → 𝑛 ≤ (𝑘 · 𝑥)) |
118 | 117 | ralrimiva 3107 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) |
119 | | breq2 5074 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑘 · 𝑥) → (𝑛 ≤ 𝑦 ↔ 𝑛 ≤ (𝑘 · 𝑥))) |
120 | 119 | ralbidv 3120 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑘 · 𝑥) → (∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦 ↔ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥))) |
121 | 120 | rspcev 3552 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛 ∈ 𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
122 | 94, 118, 121 | syl2anc 583 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
∃𝑦 ∈ ℝ
∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) |
123 | 91, 109, 122 | 3jca 1126 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦)) |
124 | | suprub 11866 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ 𝑇 𝑛 ≤ 𝑦) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, <
)) |
125 | 123, 124 | sylan 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧
(sup(𝑇, ℝ, < ) +
1) ∈ 𝑇) →
(sup(𝑇, ℝ, < ) +
1) ≤ sup(𝑇, ℝ,
< )) |
126 | 86, 125 | syldan 590 |
. . . . . . . . . . . . . 14
⊢ (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧
((sup(𝑇, ℝ, < ) +
1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, <
)) |
127 | 126 | ex 412 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(((sup(𝑇, ℝ, < ) +
1) / 𝑘) < 𝑥 → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, <
))) |
128 | 42 | zcnd 12356 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
sup(𝑇, ℝ, < )
∈ ℂ) |
129 | | 1cnd 10901 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 1 ∈
ℂ) |
130 | | nncn 11911 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℂ) |
131 | | nnne0 11937 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
132 | 130, 131 | jca 511 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) |
133 | 132 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) |
134 | | divdir 11588 |
. . . . . . . . . . . . . . . 16
⊢
((sup(𝑇, ℝ,
< ) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘))) |
135 | 128, 129,
133, 134 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
((sup(𝑇, ℝ, < ) +
1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘))) |
136 | 3 | mptex 7081 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈
V |
137 | 2 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) ∈ V) → (𝐹‘𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
138 | 136, 137 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ ℝ → (𝐹‘𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))) |
139 | 138 | fveq1d 6758 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ ℝ → ((𝐹‘𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘)) |
140 | | ovex 7288 |
. . . . . . . . . . . . . . . . . 18
⊢
(sup(𝑇, ℝ,
< ) / 𝑘) ∈
V |
141 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) |
142 | 141 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘)) |
143 | 140, 142 | mpan2 687 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦
(sup(𝑇, ℝ, < ) /
𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘)) |
144 | 139, 143 | sylan9eq 2799 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘)) |
145 | 144 | oveq1d 7270 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘))) |
146 | 135, 145 | eqtr4d 2781 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
((sup(𝑇, ℝ, < ) +
1) / 𝑘) = (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘))) |
147 | 146 | breq1d 5080 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(((sup(𝑇, ℝ, < ) +
1) / 𝑘) < 𝑥 ↔ (((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)) |
148 | 81 | zred 12355 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
(sup(𝑇, ℝ, < ) +
1) ∈ ℝ) |
149 | 148, 43 | lenltd 11051 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
((sup(𝑇, ℝ, < ) +
1) ≤ sup(𝑇, ℝ,
< ) ↔ ¬ sup(𝑇,
ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))) |
150 | 127, 147,
149 | 3imtr3d 292 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) →
((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1))) |
151 | 150 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((((𝐹‘𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1))) |
152 | 80, 151 | syld 47 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ ℝ ∧ sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1))) |
153 | 152 | exp31 419 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → (sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1))))) |
154 | 153 | com4l 92 |
. . . . . . . 8
⊢ (sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 → (𝑥 ∈ ℝ → ¬ sup(𝑇, ℝ, < ) <
(sup(𝑇, ℝ, < ) +
1))))) |
155 | 154 | com14 96 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ → (𝑘 ∈ ℕ → ((1 /
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 → (sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1))))) |
156 | 155 | 3imp 1109 |
. . . . . 6
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 /
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘) → (sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) +
1))) |
157 | 45, 156 | mt2d 136 |
. . . . 5
⊢ ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 /
(𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘) → ¬ sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥) |
158 | 157 | rexlimdv3a 3214 |
. . . 4
⊢ (𝑥 ∈ ℝ →
(∃𝑘 ∈ ℕ (1
/ (𝑥 − sup(ran (𝐹‘𝑥), ℝ, < ))) < 𝑘 → ¬ sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥)) |
159 | 41, 158 | syld 47 |
. . 3
⊢ (𝑥 ∈ ℝ → (sup(ran
(𝐹‘𝑥), ℝ, < ) < 𝑥 → ¬ sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥)) |
160 | 159 | pm2.01d 189 |
. 2
⊢ (𝑥 ∈ ℝ → ¬
sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥) |
161 | | eqlelt 10993 |
. . 3
⊢ ((sup(ran
(𝐹‘𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran
(𝐹‘𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹‘𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥))) |
162 | 30, 161 | mpancom 684 |
. 2
⊢ (𝑥 ∈ ℝ → (sup(ran
(𝐹‘𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹‘𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹‘𝑥), ℝ, < ) < 𝑥))) |
163 | 29, 160, 162 | mpbir2and 709 |
1
⊢ (𝑥 ∈ ℝ → sup(ran
(𝐹‘𝑥), ℝ, < ) = 𝑥) |