MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem5 Structured version   Visualization version   GIF version

Theorem rpnnen1lem5 12368
Description: Lemma for rpnnen1 12370. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem5 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.1 . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
2 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
3 rpnnen1lem.n . . . 4 ℕ ∈ V
4 rpnnen1lem.q . . . 4 ℚ ∈ V
51, 2, 3, 4rpnnen1lem3 12366 . . 3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
61, 2, 3, 4rpnnen1lem1 12365 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
74, 3elmap 8418 . . . . . 6 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
86, 7sylib 221 . . . . 5 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
9 frn 6493 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℚ)
10 qssre 12346 . . . . . 6 ℚ ⊆ ℝ
119, 10sstrdi 3927 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℝ)
128, 11syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ⊆ ℝ)
13 1nn 11636 . . . . . . . 8 1 ∈ ℕ
1413ne0ii 4253 . . . . . . 7 ℕ ≠ ∅
15 fdm 6495 . . . . . . . 8 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) = ℕ)
1615neeq1d 3046 . . . . . . 7 ((𝐹𝑥):ℕ⟶ℚ → (dom (𝐹𝑥) ≠ ∅ ↔ ℕ ≠ ∅))
1714, 16mpbiri 261 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) ≠ ∅)
18 dm0rn0 5759 . . . . . . 7 (dom (𝐹𝑥) = ∅ ↔ ran (𝐹𝑥) = ∅)
1918necon3bii 3039 . . . . . 6 (dom (𝐹𝑥) ≠ ∅ ↔ ran (𝐹𝑥) ≠ ∅)
2017, 19sylib 221 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ≠ ∅)
218, 20syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ≠ ∅)
22 breq2 5034 . . . . . . 7 (𝑦 = 𝑥 → (𝑛𝑦𝑛𝑥))
2322ralbidv 3162 . . . . . 6 (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2423rspcev 3571 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
255, 24mpdan 686 . . . 4 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
26 id 22 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
27 suprleub 11594 . . . 4 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2812, 21, 25, 26, 27syl31anc 1370 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
295, 28mpbird 260 . 2 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥)
301, 2, 3, 4rpnnen1lem4 12367 . . . . . . . . 9 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
31 resubcl 10939 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3230, 31mpdan 686 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3332adantr 484 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
34 posdif 11122 . . . . . . . . . 10 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3530, 34mpancom 687 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3635biimpa 480 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )))
3736gt0ne0d 11193 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ≠ 0)
3833, 37rereccld 11456 . . . . . 6 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ)
39 arch 11882 . . . . . 6 ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4038, 39syl 17 . . . . 5 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4140ex 416 . . . 4 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘))
421, 2rpnnen1lem2 12364 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
4342zred 12075 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
44433adant3 1129 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) ∈ ℝ)
4544ltp1d 11559 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))
4633, 36jca 515 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
47 nnre 11632 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
48 nngt0 11656 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
4947, 48jca 515 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
50 ltrec1 11516 . . . . . . . . . . . . 13 ((((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5146, 49, 50syl2an 598 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5230ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
53 nnrecre 11667 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
5453adantl 485 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
55 simpll 766 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5652, 54, 55ltaddsub2d 11230 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5712adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ran (𝐹𝑥) ⊆ ℝ)
58 ffn 6487 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
598, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) Fn ℕ)
60 fnfvelrn 6825 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6159, 60sylan 583 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6257, 61sseldd 3916 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ℝ)
6330adantr 484 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
6453adantl 485 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6512, 21, 253jca 1125 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
6665adantr 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
67 suprub 11589 . . . . . . . . . . . . . . . . 17 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥)) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6866, 61, 67syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6962, 63, 64, 68leadd1dd 11243 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)))
7062, 64readdcld 10659 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ)
71 readdcl 10609 . . . . . . . . . . . . . . . . 17 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
7230, 53, 71syl2an 598 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
73 simpl 486 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
74 lelttr 10720 . . . . . . . . . . . . . . . . 17 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7574expd 419 . . . . . . . . . . . . . . . 16 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7670, 72, 73, 75syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7769, 76mpd 15 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7877adantlr 714 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7956, 78sylbird 263 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8051, 79sylbid 243 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8142peano2zd 12078 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℤ)
82 oveq1 7142 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → (𝑛 / 𝑘) = ((sup(𝑇, ℝ, < ) + 1) / 𝑘))
8382breq1d 5040 . . . . . . . . . . . . . . . . . 18 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → ((𝑛 / 𝑘) < 𝑥 ↔ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8483, 1elrab2 3631 . . . . . . . . . . . . . . . . 17 ((sup(𝑇, ℝ, < ) + 1) ∈ 𝑇 ↔ ((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8584biimpri 231 . . . . . . . . . . . . . . . 16 (((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
8681, 85sylan 583 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
87 ssrab2 4007 . . . . . . . . . . . . . . . . . . . 20 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
881, 87eqsstri 3949 . . . . . . . . . . . . . . . . . . 19 𝑇 ⊆ ℤ
89 zssre 11976 . . . . . . . . . . . . . . . . . . 19 ℤ ⊆ ℝ
9088, 89sstri 3924 . . . . . . . . . . . . . . . . . 18 𝑇 ⊆ ℝ
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
92 remulcl 10611 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9392ancoms 462 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9447, 93sylan2 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
95 btwnz 12072 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
9695simpld 498 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
98 zre 11973 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
9998adantl 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
100 simpll 766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
10149ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
102 ltdivmul 11504 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
10399, 100, 101, 102syl3anc 1368 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
104103rexbidva 3255 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
10597, 104mpbird 260 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
106 rabn0 4293 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
107105, 106sylibr 237 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
1081neeq1i 3051 . . . . . . . . . . . . . . . . . 18 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
109107, 108sylibr 237 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
1101rabeq2i 3435 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
11147ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
112111, 100, 92syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
113 ltle 10718 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
11499, 112, 113syl2anc 587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
115103, 114sylbid 243 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
116115impr 458 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
117110, 116sylan2b 596 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
118117ralrimiva 3149 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
119 breq2 5034 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
120119ralbidv 3162 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
121120rspcev 3571 . . . . . . . . . . . . . . . . . 18 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12294, 118, 121syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12391, 109, 1223jca 1125 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦))
124 suprub 11589 . . . . . . . . . . . . . . . 16 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
125123, 124sylan 583 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
12686, 125syldan 594 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
127126ex 416 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < )))
12842zcnd 12076 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℂ)
129 1cnd 10625 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
130 nncn 11633 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
131 nnne0 11659 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
132130, 131jca 515 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
133132adantl 485 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
134 divdir 11312 . . . . . . . . . . . . . . . 16 ((sup(𝑇, ℝ, < ) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
135128, 129, 133, 134syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
1363mptex 6963 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
1372fvmpt2 6756 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
138136, 137mpan2 690 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
139138fveq1d 6647 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
140 ovex 7168 . . . . . . . . . . . . . . . . . 18 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
141 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
142141fvmpt2 6756 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
143140, 142mpan2 690 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
144139, 143sylan9eq 2853 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
145144oveq1d 7150 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
146135, 145eqtr4d 2836 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = (((𝐹𝑥)‘𝑘) + (1 / 𝑘)))
147146breq1d 5040 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 ↔ (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
14881zred 12075 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
149148, 43lenltd 10775 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ) ↔ ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
150127, 147, 1493imtr3d 296 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
151150adantlr 714 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15280, 151syld 47 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
153152exp31 423 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
154153com4l 92 . . . . . . . 8 (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (𝑥 ∈ ℝ → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
155154com14 96 . . . . . . 7 (𝑥 ∈ ℝ → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
1561553imp 1108 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15745, 156mt2d 138 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
158157rexlimdv3a 3245 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
15941, 158syld 47 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
160159pm2.01d 193 . 2 (𝑥 ∈ ℝ → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
161 eqlelt 10717 . . 3 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16230, 161mpancom 687 . 2 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16329, 160, 162mpbir2and 712 1 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  supcsup 8888  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  cz 11969  cq 12336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-q 12337
This theorem is referenced by:  rpnnen1lem6  12369
  Copyright terms: Public domain W3C validator