MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen1lem5 Structured version   Visualization version   GIF version

Theorem rpnnen1lem5 13020
Description: Lemma for rpnnen1 13022. (Contributed by Mario Carneiro, 12-May-2013.) (Revised by NM, 13-Aug-2021.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rpnnen1lem.1 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
rpnnen1lem.2 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
rpnnen1lem.n ℕ ∈ V
rpnnen1lem.q ℚ ∈ V
Assertion
Ref Expression
rpnnen1lem5 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Distinct variable groups:   𝑘,𝐹,𝑛,𝑥   𝑇,𝑛
Allowed substitution hints:   𝑇(𝑥,𝑘)

Proof of Theorem rpnnen1lem5
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rpnnen1lem.1 . . . 4 𝑇 = {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥}
2 rpnnen1lem.2 . . . 4 𝐹 = (𝑥 ∈ ℝ ↦ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
3 rpnnen1lem.n . . . 4 ℕ ∈ V
4 rpnnen1lem.q . . . 4 ℚ ∈ V
51, 2, 3, 4rpnnen1lem3 13018 . . 3 (𝑥 ∈ ℝ → ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥)
61, 2, 3, 4rpnnen1lem1 13017 . . . . . 6 (𝑥 ∈ ℝ → (𝐹𝑥) ∈ (ℚ ↑m ℕ))
74, 3elmap 8909 . . . . . 6 ((𝐹𝑥) ∈ (ℚ ↑m ℕ) ↔ (𝐹𝑥):ℕ⟶ℚ)
86, 7sylib 218 . . . . 5 (𝑥 ∈ ℝ → (𝐹𝑥):ℕ⟶ℚ)
9 frn 6743 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℚ)
10 qssre 12998 . . . . . 6 ℚ ⊆ ℝ
119, 10sstrdi 4007 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ⊆ ℝ)
128, 11syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ⊆ ℝ)
13 1nn 12274 . . . . . . . 8 1 ∈ ℕ
1413ne0ii 4349 . . . . . . 7 ℕ ≠ ∅
15 fdm 6745 . . . . . . . 8 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) = ℕ)
1615neeq1d 2997 . . . . . . 7 ((𝐹𝑥):ℕ⟶ℚ → (dom (𝐹𝑥) ≠ ∅ ↔ ℕ ≠ ∅))
1714, 16mpbiri 258 . . . . . 6 ((𝐹𝑥):ℕ⟶ℚ → dom (𝐹𝑥) ≠ ∅)
18 dm0rn0 5937 . . . . . . 7 (dom (𝐹𝑥) = ∅ ↔ ran (𝐹𝑥) = ∅)
1918necon3bii 2990 . . . . . 6 (dom (𝐹𝑥) ≠ ∅ ↔ ran (𝐹𝑥) ≠ ∅)
2017, 19sylib 218 . . . . 5 ((𝐹𝑥):ℕ⟶ℚ → ran (𝐹𝑥) ≠ ∅)
218, 20syl 17 . . . 4 (𝑥 ∈ ℝ → ran (𝐹𝑥) ≠ ∅)
22 breq2 5151 . . . . . . 7 (𝑦 = 𝑥 → (𝑛𝑦𝑛𝑥))
2322ralbidv 3175 . . . . . 6 (𝑦 = 𝑥 → (∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2423rspcev 3621 . . . . 5 ((𝑥 ∈ ℝ ∧ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥) → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
255, 24mpdan 687 . . . 4 (𝑥 ∈ ℝ → ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦)
26 id 22 . . . 4 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ)
27 suprleub 12231 . . . 4 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
2812, 21, 25, 26, 27syl31anc 1372 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ↔ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑥))
295, 28mpbird 257 . 2 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥)
301, 2, 3, 4rpnnen1lem4 13019 . . . . . . . . 9 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
31 resubcl 11570 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3230, 31mpdan 687 . . . . . . . 8 (𝑥 ∈ ℝ → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
3332adantr 480 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ)
34 posdif 11753 . . . . . . . . . 10 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3530, 34mpancom 688 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 ↔ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
3635biimpa 476 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )))
3736gt0ne0d 11824 . . . . . . 7 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ≠ 0)
3833, 37rereccld 12091 . . . . . 6 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ)
39 arch 12520 . . . . . 6 ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∈ ℝ → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4038, 39syl 17 . . . . 5 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘)
4140ex 412 . . . 4 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘))
421, 2rpnnen1lem2 13016 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℤ)
4342zred 12719 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℝ)
44433adant3 1131 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) ∈ ℝ)
4544ltp1d 12195 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1))
4633, 36jca 511 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) → ((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
47 nnre 12270 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
48 nngt0 12294 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → 0 < 𝑘)
4947, 48jca 511 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
50 ltrec1 12152 . . . . . . . . . . . . 13 ((((𝑥 − sup(ran (𝐹𝑥), ℝ, < )) ∈ ℝ ∧ 0 < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5146, 49, 50syl2an 596 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5230ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
53 nnrecre 12305 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (1 / 𝑘) ∈ ℝ)
5453adantl 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
55 simpll 767 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
5652, 54, 55ltaddsub2d 11861 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 ↔ (1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))))
5712adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ran (𝐹𝑥) ⊆ ℝ)
58 ffn 6736 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑥):ℕ⟶ℚ → (𝐹𝑥) Fn ℕ)
598, 58syl 17 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) Fn ℕ)
60 fnfvelrn 7099 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑥) Fn ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6159, 60sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥))
6257, 61sseldd 3995 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ∈ ℝ)
6330adantr 480 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ)
6453adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (1 / 𝑘) ∈ ℝ)
6512, 21, 253jca 1127 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
6665adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦))
67 suprub 12226 . . . . . . . . . . . . . . . . 17 (((ran (𝐹𝑥) ⊆ ℝ ∧ ran (𝐹𝑥) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛 ∈ ran (𝐹𝑥)𝑛𝑦) ∧ ((𝐹𝑥)‘𝑘) ∈ ran (𝐹𝑥)) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6866, 61, 67syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) ≤ sup(ran (𝐹𝑥), ℝ, < ))
6962, 63, 64, 68leadd1dd 11874 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)))
7062, 64readdcld 11287 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ)
71 readdcl 11235 . . . . . . . . . . . . . . . . 17 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ (1 / 𝑘) ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
7230, 53, 71syl2an 596 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ)
73 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑥 ∈ ℝ)
74 lelttr 11348 . . . . . . . . . . . . . . . . 17 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7574expd 415 . . . . . . . . . . . . . . . 16 (((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ∈ ℝ ∧ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7670, 72, 73, 75syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) ≤ (sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥)))
7769, 76mpd 15 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7877adantlr 715 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((sup(ran (𝐹𝑥), ℝ, < ) + (1 / 𝑘)) < 𝑥 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
7956, 78sylbird 260 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑘) < (𝑥 − sup(ran (𝐹𝑥), ℝ, < )) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8051, 79sylbid 240 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
8142peano2zd 12722 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℤ)
82 oveq1 7437 . . . . . . . . . . . . . . . . . . 19 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → (𝑛 / 𝑘) = ((sup(𝑇, ℝ, < ) + 1) / 𝑘))
8382breq1d 5157 . . . . . . . . . . . . . . . . . 18 (𝑛 = (sup(𝑇, ℝ, < ) + 1) → ((𝑛 / 𝑘) < 𝑥 ↔ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8483, 1elrab2 3697 . . . . . . . . . . . . . . . . 17 ((sup(𝑇, ℝ, < ) + 1) ∈ 𝑇 ↔ ((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥))
8584biimpri 228 . . . . . . . . . . . . . . . 16 (((sup(𝑇, ℝ, < ) + 1) ∈ ℤ ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
8681, 85sylan 580 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇)
87 ssrab2 4089 . . . . . . . . . . . . . . . . . . . 20 {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ⊆ ℤ
881, 87eqsstri 4029 . . . . . . . . . . . . . . . . . . 19 𝑇 ⊆ ℤ
89 zssre 12617 . . . . . . . . . . . . . . . . . . 19 ℤ ⊆ ℝ
9088, 89sstri 4004 . . . . . . . . . . . . . . . . . 18 𝑇 ⊆ ℝ
9190a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ⊆ ℝ)
92 remulcl 11237 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9392ancoms 458 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℝ) → (𝑘 · 𝑥) ∈ ℝ)
9447, 93sylan2 593 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 · 𝑥) ∈ ℝ)
95 btwnz 12718 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 · 𝑥) ∈ ℝ → (∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥) ∧ ∃𝑛 ∈ ℤ (𝑘 · 𝑥) < 𝑛))
9695simpld 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 · 𝑥) ∈ ℝ → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
9794, 96syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥))
98 zre 12614 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
9998adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℝ)
100 simpll 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑥 ∈ ℝ)
10149ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 ∈ ℝ ∧ 0 < 𝑘))
102 ltdivmul 12140 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (𝑘 ∈ ℝ ∧ 0 < 𝑘)) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
10399, 100, 101, 102syl3anc 1370 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 < (𝑘 · 𝑥)))
104103rexbidva 3174 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥 ↔ ∃𝑛 ∈ ℤ 𝑛 < (𝑘 · 𝑥)))
10597, 104mpbird 257 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
106 rabn0 4394 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅ ↔ ∃𝑛 ∈ ℤ (𝑛 / 𝑘) < 𝑥)
107105, 106sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
1081neeq1i 3002 . . . . . . . . . . . . . . . . . 18 (𝑇 ≠ ∅ ↔ {𝑛 ∈ ℤ ∣ (𝑛 / 𝑘) < 𝑥} ≠ ∅)
109107, 108sylibr 234 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 𝑇 ≠ ∅)
1101reqabi 3456 . . . . . . . . . . . . . . . . . . . 20 (𝑛𝑇 ↔ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥))
11147ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → 𝑘 ∈ ℝ)
112111, 100, 92syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑘 · 𝑥) ∈ ℝ)
113 ltle 11346 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑛 ∈ ℝ ∧ (𝑘 · 𝑥) ∈ ℝ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
11499, 112, 113syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → (𝑛 < (𝑘 · 𝑥) → 𝑛 ≤ (𝑘 · 𝑥)))
115103, 114sylbid 240 . . . . . . . . . . . . . . . . . . . . 21 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛 ∈ ℤ) → ((𝑛 / 𝑘) < 𝑥𝑛 ≤ (𝑘 · 𝑥)))
116115impr 454 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (𝑛 ∈ ℤ ∧ (𝑛 / 𝑘) < 𝑥)) → 𝑛 ≤ (𝑘 · 𝑥))
117110, 116sylan2b 594 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ 𝑛𝑇) → 𝑛 ≤ (𝑘 · 𝑥))
118117ralrimiva 3143 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥))
119 breq2 5151 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑘 · 𝑥) → (𝑛𝑦𝑛 ≤ (𝑘 · 𝑥)))
120119ralbidv 3175 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑘 · 𝑥) → (∀𝑛𝑇 𝑛𝑦 ↔ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)))
121120rspcev 3621 . . . . . . . . . . . . . . . . . 18 (((𝑘 · 𝑥) ∈ ℝ ∧ ∀𝑛𝑇 𝑛 ≤ (𝑘 · 𝑥)) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12294, 118, 121syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦)
12391, 109, 1223jca 1127 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦))
124 suprub 12226 . . . . . . . . . . . . . . . 16 (((𝑇 ⊆ ℝ ∧ 𝑇 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑇 𝑛𝑦) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
125123, 124sylan 580 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ (sup(𝑇, ℝ, < ) + 1) ∈ 𝑇) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
12686, 125syldan 591 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) ∧ ((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥) → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ))
127126ex 412 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 → (sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < )))
12842zcnd 12720 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → sup(𝑇, ℝ, < ) ∈ ℂ)
129 1cnd 11253 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → 1 ∈ ℂ)
130 nncn 12271 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
131 nnne0 12297 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
132130, 131jca 511 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
133132adantl 481 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0))
134 divdir 11944 . . . . . . . . . . . . . . . 16 ((sup(𝑇, ℝ, < ) ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝑘 ∈ ℂ ∧ 𝑘 ≠ 0)) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
135128, 129, 133, 134syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
1363mptex 7242 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V
1372fvmpt2 7026 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℝ ∧ (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) ∈ V) → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
138136, 137mpan2 691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝐹𝑥) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)))
139138fveq1d 6908 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℝ → ((𝐹𝑥)‘𝑘) = ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘))
140 ovex 7463 . . . . . . . . . . . . . . . . . 18 (sup(𝑇, ℝ, < ) / 𝑘) ∈ V
141 eqid 2734 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘)) = (𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))
142141fvmpt2 7026 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ (sup(𝑇, ℝ, < ) / 𝑘) ∈ V) → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
143140, 142mpan2 691 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → ((𝑘 ∈ ℕ ↦ (sup(𝑇, ℝ, < ) / 𝑘))‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
144139, 143sylan9eq 2794 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((𝐹𝑥)‘𝑘) = (sup(𝑇, ℝ, < ) / 𝑘))
145144oveq1d 7445 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) = ((sup(𝑇, ℝ, < ) / 𝑘) + (1 / 𝑘)))
146135, 145eqtr4d 2777 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) / 𝑘) = (((𝐹𝑥)‘𝑘) + (1 / 𝑘)))
147146breq1d 5157 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (((sup(𝑇, ℝ, < ) + 1) / 𝑘) < 𝑥 ↔ (((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥))
14881zred 12719 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → (sup(𝑇, ℝ, < ) + 1) ∈ ℝ)
149148, 43lenltd 11404 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((sup(𝑇, ℝ, < ) + 1) ≤ sup(𝑇, ℝ, < ) ↔ ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
150127, 147, 1493imtr3d 293 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
151150adantlr 715 . . . . . . . . . . 11 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((((𝐹𝑥)‘𝑘) + (1 / 𝑘)) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15280, 151syld 47 . . . . . . . . . 10 (((𝑥 ∈ ℝ ∧ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
153152exp31 419 . . . . . . . . 9 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
154153com4l 92 . . . . . . . 8 (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (𝑥 ∈ ℝ → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
155154com14 96 . . . . . . 7 (𝑥 ∈ ℝ → (𝑘 ∈ ℕ → ((1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))))
1561553imp 1110 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(𝑇, ℝ, < ) < (sup(𝑇, ℝ, < ) + 1)))
15745, 156mt2d 136 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑘 ∈ ℕ ∧ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘) → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
158157rexlimdv3a 3156 . . . 4 (𝑥 ∈ ℝ → (∃𝑘 ∈ ℕ (1 / (𝑥 − sup(ran (𝐹𝑥), ℝ, < ))) < 𝑘 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
15941, 158syld 47 . . 3 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) < 𝑥 → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥))
160159pm2.01d 190 . 2 (𝑥 ∈ ℝ → ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)
161 eqlelt 11345 . . 3 ((sup(ran (𝐹𝑥), ℝ, < ) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16230, 161mpancom 688 . 2 (𝑥 ∈ ℝ → (sup(ran (𝐹𝑥), ℝ, < ) = 𝑥 ↔ (sup(ran (𝐹𝑥), ℝ, < ) ≤ 𝑥 ∧ ¬ sup(ran (𝐹𝑥), ℝ, < ) < 𝑥)))
16329, 160, 162mpbir2and 713 1 (𝑥 ∈ ℝ → sup(ran (𝐹𝑥), ℝ, < ) = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  {crab 3432  Vcvv 3477  wss 3962  c0 4338   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  m cmap 8864  supcsup 9477  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489   / cdiv 11917  cn 12263  cz 12610  cq 12987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-sup 9479  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-n0 12524  df-z 12611  df-q 12988
This theorem is referenced by:  rpnnen1lem6  13021
  Copyright terms: Public domain W3C validator