MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinufil Structured version   Visualization version   GIF version

Theorem cfinufil 23866
Description: An ultrafilter is free iff it contains the Fréchet filter cfinfil 23831 as a subset. (Contributed by NM, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinufil (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑋

Proof of Theorem cfinufil
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elpwi 4582 . . . . 5 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2 ufilb 23844 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
32adantr 480 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → (¬ 𝑥𝐹 ↔ (𝑋𝑥) ∈ 𝐹))
4 ufilfil 23842 . . . . . . . . . . . 12 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
54adantr 480 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → 𝐹 ∈ (Fil‘𝑋))
6 filfinnfr 23815 . . . . . . . . . . . . 13 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑋𝑥) ∈ 𝐹 ∧ (𝑋𝑥) ∈ Fin) → 𝐹 ≠ ∅)
763exp 1119 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ 𝐹 → ((𝑋𝑥) ∈ Fin → 𝐹 ≠ ∅)))
87com23 86 . . . . . . . . . . 11 (𝐹 ∈ (Fil‘𝑋) → ((𝑋𝑥) ∈ Fin → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅)))
95, 8syl 17 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ Fin → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅)))
109imp 406 . . . . . . . . 9 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → ((𝑋𝑥) ∈ 𝐹 𝐹 ≠ ∅))
113, 10sylbid 240 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → (¬ 𝑥𝐹 𝐹 ≠ ∅))
1211necon4bd 2952 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) ∧ (𝑋𝑥) ∈ Fin) → ( 𝐹 = ∅ → 𝑥𝐹))
1312ex 412 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ((𝑋𝑥) ∈ Fin → ( 𝐹 = ∅ → 𝑥𝐹)))
1413com23 86 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥𝑋) → ( 𝐹 = ∅ → ((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
151, 14sylan2 593 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → ( 𝐹 = ∅ → ((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
1615ralrimdva 3140 . . 3 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ → ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
174adantr 480 . . . . . . . . . . . 12 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → 𝐹 ∈ (Fil‘𝑋))
18 uffixsn 23863 . . . . . . . . . . . 12 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → {𝑦} ∈ 𝐹)
19 filelss 23790 . . . . . . . . . . . 12 ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑦} ∈ 𝐹) → {𝑦} ⊆ 𝑋)
2017, 18, 19syl2anc 584 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → {𝑦} ⊆ 𝑋)
21 dfss4 4244 . . . . . . . . . . 11 ({𝑦} ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦})
2220, 21sylib 218 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦})
23 snfi 9057 . . . . . . . . . 10 {𝑦} ∈ Fin
2422, 23eqeltrdi 2842 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin)
25 difss 4111 . . . . . . . . . . 11 (𝑋 ∖ {𝑦}) ⊆ 𝑋
26 filtop 23793 . . . . . . . . . . . 12 (𝐹 ∈ (Fil‘𝑋) → 𝑋𝐹)
27 elpw2g 5303 . . . . . . . . . . . 12 (𝑋𝐹 → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋))
2817, 26, 273syl 18 . . . . . . . . . . 11 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋))
2925, 28mpbiri 258 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋)
30 difeq2 4095 . . . . . . . . . . . . 13 (𝑥 = (𝑋 ∖ {𝑦}) → (𝑋𝑥) = (𝑋 ∖ (𝑋 ∖ {𝑦})))
3130eleq1d 2819 . . . . . . . . . . . 12 (𝑥 = (𝑋 ∖ {𝑦}) → ((𝑋𝑥) ∈ Fin ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin))
32 eleq1 2822 . . . . . . . . . . . 12 (𝑥 = (𝑋 ∖ {𝑦}) → (𝑥𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3331, 32imbi12d 344 . . . . . . . . . . 11 (𝑥 = (𝑋 ∖ {𝑦}) → (((𝑋𝑥) ∈ Fin → 𝑥𝐹) ↔ ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3433rspcv 3597 . . . . . . . . . 10 ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3529, 34syl 17 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹)))
3624, 35mpid 44 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝐹))
37 ufilb 23844 . . . . . . . . . 10 ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑦} ⊆ 𝑋) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3820, 37syldan 591 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹))
3918pm2.24d 151 . . . . . . . . 9 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (¬ {𝑦} ∈ 𝐹 → ¬ 𝑦 𝐹))
4038, 39sylbird 260 . . . . . . . 8 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝐹 → ¬ 𝑦 𝐹))
4136, 40syld 47 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → ¬ 𝑦 𝐹))
4241impancom 451 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → (𝑦 𝐹 → ¬ 𝑦 𝐹))
4342pm2.01d 190 . . . . 5 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → ¬ 𝑦 𝐹)
4443eq0rdv 4382 . . . 4 ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)) → 𝐹 = ∅)
4544ex 412 . . 3 (𝐹 ∈ (UFil‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹) → 𝐹 = ∅))
4616, 45impbid 212 . 2 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹)))
47 rabss 4047 . 2 ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹 ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋𝑥) ∈ Fin → 𝑥𝐹))
4846, 47bitr4di 289 1 (𝐹 ∈ (UFil‘𝑋) → ( 𝐹 = ∅ ↔ {𝑥 ∈ 𝒫 𝑋 ∣ (𝑋𝑥) ∈ Fin} ⊆ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  {crab 3415  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601   cint 4922  cfv 6531  Fincfn 8959  Filcfil 23783  UFilcufil 23837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1o 8480  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fbas 21312  df-fg 21313  df-fil 23784  df-ufil 23839
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator