Step | Hyp | Ref
| Expression |
1 | | elpwi 4542 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋) |
2 | | ufilb 23057 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (¬ 𝑥 ∈ 𝐹 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
3 | 2 | adantr 481 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑋 ∖ 𝑥) ∈ Fin) → (¬ 𝑥 ∈ 𝐹 ↔ (𝑋 ∖ 𝑥) ∈ 𝐹)) |
4 | | ufilfil 23055 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
5 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → 𝐹 ∈ (Fil‘𝑋)) |
6 | | filfinnfr 23028 |
. . . . . . . . . . . . 13
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ (𝑋 ∖ 𝑥) ∈ 𝐹 ∧ (𝑋 ∖ 𝑥) ∈ Fin) → ∩ 𝐹
≠ ∅) |
7 | 6 | 3exp 1118 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → ((𝑋 ∖ 𝑥) ∈ Fin → ∩ 𝐹
≠ ∅))) |
8 | 7 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (Fil‘𝑋) → ((𝑋 ∖ 𝑥) ∈ Fin → ((𝑋 ∖ 𝑥) ∈ 𝐹 → ∩ 𝐹 ≠
∅))) |
9 | 5, 8 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ Fin → ((𝑋 ∖ 𝑥) ∈ 𝐹 → ∩ 𝐹 ≠
∅))) |
10 | 9 | imp 407 |
. . . . . . . . 9
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑋 ∖ 𝑥) ∈ Fin) → ((𝑋 ∖ 𝑥) ∈ 𝐹 → ∩ 𝐹 ≠ ∅)) |
11 | 3, 10 | sylbid 239 |
. . . . . . . 8
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑋 ∖ 𝑥) ∈ Fin) → (¬ 𝑥 ∈ 𝐹 → ∩ 𝐹 ≠ ∅)) |
12 | 11 | necon4bd 2963 |
. . . . . . 7
⊢ (((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) ∧ (𝑋 ∖ 𝑥) ∈ Fin) → (∩ 𝐹 =
∅ → 𝑥 ∈
𝐹)) |
13 | 12 | ex 413 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → ((𝑋 ∖ 𝑥) ∈ Fin → (∩ 𝐹 =
∅ → 𝑥 ∈
𝐹))) |
14 | 13 | com23 86 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ⊆ 𝑋) → (∩ 𝐹 = ∅ → ((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹))) |
15 | 1, 14 | sylan2 593 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑥 ∈ 𝒫 𝑋) → (∩ 𝐹 = ∅ → ((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹))) |
16 | 15 | ralrimdva 3106 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 =
∅ → ∀𝑥
∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹))) |
17 | 4 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → 𝐹 ∈ (Fil‘𝑋)) |
18 | | uffixsn 23076 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → {𝑦} ∈ 𝐹) |
19 | | filelss 23003 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Fil‘𝑋) ∧ {𝑦} ∈ 𝐹) → {𝑦} ⊆ 𝑋) |
20 | 17, 18, 19 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → {𝑦} ⊆ 𝑋) |
21 | | dfss4 4192 |
. . . . . . . . . . 11
⊢ ({𝑦} ⊆ 𝑋 ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦}) |
22 | 20, 21 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) = {𝑦}) |
23 | | snfi 8834 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
24 | 22, 23 | eqeltrdi 2847 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin) |
25 | | difss 4066 |
. . . . . . . . . . 11
⊢ (𝑋 ∖ {𝑦}) ⊆ 𝑋 |
26 | | filtop 23006 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ (Fil‘𝑋) → 𝑋 ∈ 𝐹) |
27 | | elpw2g 5268 |
. . . . . . . . . . . 12
⊢ (𝑋 ∈ 𝐹 → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋)) |
28 | 17, 26, 27 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 ↔ (𝑋 ∖ {𝑦}) ⊆ 𝑋)) |
29 | 25, 28 | mpbiri 257 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋) |
30 | | difeq2 4051 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝑋 ∖ {𝑦}) → (𝑋 ∖ 𝑥) = (𝑋 ∖ (𝑋 ∖ {𝑦}))) |
31 | 30 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑋 ∖ {𝑦}) → ((𝑋 ∖ 𝑥) ∈ Fin ↔ (𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin)) |
32 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑋 ∖ {𝑦}) → (𝑥 ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹)) |
33 | 31, 32 | imbi12d 345 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑋 ∖ {𝑦}) → (((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹) ↔ ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹))) |
34 | 33 | rspcv 3557 |
. . . . . . . . . 10
⊢ ((𝑋 ∖ {𝑦}) ∈ 𝒫 𝑋 → (∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹))) |
35 | 29, 34 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹) → ((𝑋 ∖ (𝑋 ∖ {𝑦})) ∈ Fin → (𝑋 ∖ {𝑦}) ∈ 𝐹))) |
36 | 24, 35 | mpid 44 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹) → (𝑋 ∖ {𝑦}) ∈ 𝐹)) |
37 | | ufilb 23057 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ {𝑦} ⊆ 𝑋) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹)) |
38 | 20, 37 | syldan 591 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (¬ {𝑦} ∈ 𝐹 ↔ (𝑋 ∖ {𝑦}) ∈ 𝐹)) |
39 | 18 | pm2.24d 151 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (¬ {𝑦} ∈ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹)) |
40 | 38, 39 | sylbird 259 |
. . . . . . . 8
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → ((𝑋 ∖ {𝑦}) ∈ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹)) |
41 | 36, 40 | syld 47 |
. . . . . . 7
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ 𝑦 ∈ ∩ 𝐹) → (∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹) → ¬ 𝑦 ∈ ∩ 𝐹)) |
42 | 41 | impancom 452 |
. . . . . 6
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹)) → (𝑦 ∈ ∩ 𝐹 → ¬ 𝑦 ∈ ∩ 𝐹)) |
43 | 42 | pm2.01d 189 |
. . . . 5
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹)) → ¬ 𝑦 ∈ ∩ 𝐹) |
44 | 43 | eq0rdv 4338 |
. . . 4
⊢ ((𝐹 ∈ (UFil‘𝑋) ∧ ∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹)) → ∩ 𝐹 = ∅) |
45 | 44 | ex 413 |
. . 3
⊢ (𝐹 ∈ (UFil‘𝑋) → (∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹) → ∩ 𝐹 = ∅)) |
46 | 16, 45 | impbid 211 |
. 2
⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 =
∅ ↔ ∀𝑥
∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹))) |
47 | | rabss 4005 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ Fin} ⊆ 𝐹 ↔ ∀𝑥 ∈ 𝒫 𝑋((𝑋 ∖ 𝑥) ∈ Fin → 𝑥 ∈ 𝐹)) |
48 | 46, 47 | bitr4di 289 |
1
⊢ (𝐹 ∈ (UFil‘𝑋) → (∩ 𝐹 =
∅ ↔ {𝑥 ∈
𝒫 𝑋 ∣ (𝑋 ∖ 𝑥) ∈ Fin} ⊆ 𝐹)) |