MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rennim Structured version   Visualization version   GIF version

Theorem rennim 15246
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 11219 . . . . . . 7 i ∈ ℂ
2 recn 11250 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 11244 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 585 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpre 13038 . . . . . . 7 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
6 rereb 15127 . . . . . . 7 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴)))
75, 6imbitrid 243 . . . . . 6 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
84, 7syl 17 . . . . 5 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
94addlidd 11467 . . . . . . . 8 (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴))
109fveq2d 6907 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴)))
11 0re 11268 . . . . . . . 8 0 ∈ ℝ
12 crre 15121 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0)
1311, 12mpan 688 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0)
1410, 13eqtr3d 2768 . . . . . 6 (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0)
1514eqeq1d 2728 . . . . 5 (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴)))
168, 15sylibd 238 . . . 4 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴)))
17 rpne0 13046 . . . . . 6 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0)
1817necon2bi 2961 . . . . 5 ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+)
1918eqcoms 2734 . . . 4 (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+)
2016, 19syl6 35 . . 3 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+))
2120pm2.01d 189 . 2 (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+)
22 df-nel 3037 . 2 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
2321, 22sylibr 233 1 (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wcel 2099  wnel 3036  cfv 6556  (class class class)co 7426  cc 11158  cr 11159  0cc0 11160  ici 11162   + caddc 11163   · cmul 11165  +crp 13030  cre 15104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-br 5156  df-opab 5218  df-mpt 5239  df-id 5582  df-po 5596  df-so 5597  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-div 11924  df-2 12329  df-rp 13031  df-cj 15106  df-re 15107  df-im 15108
This theorem is referenced by:  sqrt0  15248  resqreu  15259  resqrtcl  15260
  Copyright terms: Public domain W3C validator