Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rennim | Structured version Visualization version GIF version |
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.) |
Ref | Expression |
---|---|
rennim | ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10861 | . . . . . . 7 ⊢ i ∈ ℂ | |
2 | recn 10892 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
3 | mulcl 10886 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
4 | 1, 2, 3 | sylancr 586 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ) |
5 | rpre 12667 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ) | |
6 | rereb 14759 | . . . . . . 7 ⊢ ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴))) | |
7 | 5, 6 | syl5ib 243 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴))) |
8 | 4, 7 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴))) |
9 | 4 | addid2d 11106 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴)) |
10 | 9 | fveq2d 6760 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴))) |
11 | 0re 10908 | . . . . . . . 8 ⊢ 0 ∈ ℝ | |
12 | crre 14753 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0) | |
13 | 11, 12 | mpan 686 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0) |
14 | 10, 13 | eqtr3d 2780 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0) |
15 | 14 | eqeq1d 2740 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴))) |
16 | 8, 15 | sylibd 238 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴))) |
17 | rpne0 12675 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0) | |
18 | 17 | necon2bi 2973 | . . . . 5 ⊢ ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+) |
19 | 18 | eqcoms 2746 | . . . 4 ⊢ (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+) |
20 | 16, 19 | syl6 35 | . . 3 ⊢ (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+)) |
21 | 20 | pm2.01d 189 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+) |
22 | df-nel 3049 | . 2 ⊢ ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+) | |
23 | 21, 22 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 ici 10804 + caddc 10805 · cmul 10807 ℝ+crp 12659 ℜcre 14736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-2 11966 df-rp 12660 df-cj 14738 df-re 14739 df-im 14740 |
This theorem is referenced by: sqr0lem 14880 resqreu 14892 resqrtcl 14893 |
Copyright terms: Public domain | W3C validator |