MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rennim Structured version   Visualization version   GIF version

Theorem rennim 14598
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 10596 . . . . . . 7 i ∈ ℂ
2 recn 10627 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 10621 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 589 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpre 12398 . . . . . . 7 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
6 rereb 14479 . . . . . . 7 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴)))
75, 6syl5ib 246 . . . . . 6 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
84, 7syl 17 . . . . 5 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
94addid2d 10841 . . . . . . . 8 (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴))
109fveq2d 6674 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴)))
11 0re 10643 . . . . . . . 8 0 ∈ ℝ
12 crre 14473 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0)
1311, 12mpan 688 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0)
1410, 13eqtr3d 2858 . . . . . 6 (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0)
1514eqeq1d 2823 . . . . 5 (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴)))
168, 15sylibd 241 . . . 4 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴)))
17 rpne0 12406 . . . . . 6 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0)
1817necon2bi 3046 . . . . 5 ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+)
1918eqcoms 2829 . . . 4 (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+)
2016, 19syl6 35 . . 3 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+))
2120pm2.01d 192 . 2 (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+)
22 df-nel 3124 . 2 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
2321, 22sylibr 236 1 (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wcel 2114  wnel 3123  cfv 6355  (class class class)co 7156  cc 10535  cr 10536  0cc0 10537  ici 10539   + caddc 10540   · cmul 10542  +crp 12390  cre 14456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-cj 14458  df-re 14459  df-im 14460
This theorem is referenced by:  sqr0lem  14600  resqreu  14612  resqrtcl  14613
  Copyright terms: Public domain W3C validator