MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rennim Structured version   Visualization version   GIF version

Theorem rennim 14878
Description: A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
Assertion
Ref Expression
rennim (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)

Proof of Theorem rennim
StepHypRef Expression
1 ax-icn 10861 . . . . . . 7 i ∈ ℂ
2 recn 10892 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 mulcl 10886 . . . . . . 7 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
41, 2, 3sylancr 586 . . . . . 6 (𝐴 ∈ ℝ → (i · 𝐴) ∈ ℂ)
5 rpre 12667 . . . . . . 7 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ∈ ℝ)
6 rereb 14759 . . . . . . 7 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ ↔ (ℜ‘(i · 𝐴)) = (i · 𝐴)))
75, 6syl5ib 243 . . . . . 6 ((i · 𝐴) ∈ ℂ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
84, 7syl 17 . . . . 5 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → (ℜ‘(i · 𝐴)) = (i · 𝐴)))
94addid2d 11106 . . . . . . . 8 (𝐴 ∈ ℝ → (0 + (i · 𝐴)) = (i · 𝐴))
109fveq2d 6760 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = (ℜ‘(i · 𝐴)))
11 0re 10908 . . . . . . . 8 0 ∈ ℝ
12 crre 14753 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (ℜ‘(0 + (i · 𝐴))) = 0)
1311, 12mpan 686 . . . . . . 7 (𝐴 ∈ ℝ → (ℜ‘(0 + (i · 𝐴))) = 0)
1410, 13eqtr3d 2780 . . . . . 6 (𝐴 ∈ ℝ → (ℜ‘(i · 𝐴)) = 0)
1514eqeq1d 2740 . . . . 5 (𝐴 ∈ ℝ → ((ℜ‘(i · 𝐴)) = (i · 𝐴) ↔ 0 = (i · 𝐴)))
168, 15sylibd 238 . . . 4 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → 0 = (i · 𝐴)))
17 rpne0 12675 . . . . . 6 ((i · 𝐴) ∈ ℝ+ → (i · 𝐴) ≠ 0)
1817necon2bi 2973 . . . . 5 ((i · 𝐴) = 0 → ¬ (i · 𝐴) ∈ ℝ+)
1918eqcoms 2746 . . . 4 (0 = (i · 𝐴) → ¬ (i · 𝐴) ∈ ℝ+)
2016, 19syl6 35 . . 3 (𝐴 ∈ ℝ → ((i · 𝐴) ∈ ℝ+ → ¬ (i · 𝐴) ∈ ℝ+))
2120pm2.01d 189 . 2 (𝐴 ∈ ℝ → ¬ (i · 𝐴) ∈ ℝ+)
22 df-nel 3049 . 2 ((i · 𝐴) ∉ ℝ+ ↔ ¬ (i · 𝐴) ∈ ℝ+)
2321, 22sylibr 233 1 (𝐴 ∈ ℝ → (i · 𝐴) ∉ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wnel 3048  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807  +crp 12659  cre 14736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-rp 12660  df-cj 14738  df-re 14739  df-im 14740
This theorem is referenced by:  sqr0lem  14880  resqreu  14892  resqrtcl  14893
  Copyright terms: Public domain W3C validator