MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Visualization version   GIF version

Theorem ostth3 27596
Description: - Lemma for ostth 27597: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth3.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth3.3 (𝜑𝑃 ∈ ℙ)
ostth3.4 (𝜑 → (𝐹𝑃) < 1)
ostth3.5 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
ostth3.6 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
Assertion
Ref Expression
ostth3 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑛,𝑝,𝑦   𝑛,𝐾   𝑥,𝑛,𝑎,𝑝,𝑞,𝑦,𝜑   𝐽,𝑎,𝑝,𝑦   𝑆,𝑎   𝐴,𝑎,𝑛,𝑝,𝑞,𝑥,𝑦   𝑄,𝑛,𝑥,𝑦   𝐹,𝑎,𝑛,𝑝,𝑞,𝑦   𝑃,𝑎,𝑝,𝑞,𝑥,𝑦   𝑅,𝑎,𝑝,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑃(𝑛)   𝑄(𝑞,𝑝,𝑎)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑦,𝑛,𝑞,𝑝)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑝,𝑎)

Proof of Theorem ostth3
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
2 ostth.1 . . . . . . . . 9 (𝜑𝐹𝐴)
3 ostth3.3 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
4 prmuz2 16614 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
53, 4syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (ℤ‘2))
6 eluz2b2 12825 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
75, 6sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
87simpld 494 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
9 nnq 12866 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℚ)
11 qabsabv.a . . . . . . . . . 10 𝐴 = (AbsVal‘𝑄)
12 qrng.q . . . . . . . . . . 11 𝑄 = (ℂflds ℚ)
1312qrngbas 27577 . . . . . . . . . 10 ℚ = (Base‘𝑄)
1411, 13abvcl 20740 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ) → (𝐹𝑃) ∈ ℝ)
152, 10, 14syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝑃) ∈ ℝ)
168nnne0d 12186 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
1712qrng0 27579 . . . . . . . . . 10 0 = (0g𝑄)
1811, 13, 17abvgt0 20744 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) → 0 < (𝐹𝑃))
192, 10, 16, 18syl3anc 1373 . . . . . . . 8 (𝜑 → 0 < (𝐹𝑃))
2015, 19elrpd 12937 . . . . . . 7 (𝜑 → (𝐹𝑃) ∈ ℝ+)
2120relogcld 26579 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) ∈ ℝ)
228nnred 12151 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
237simprd 495 . . . . . . 7 (𝜑 → 1 < 𝑃)
2422, 23rplogcld 26585 . . . . . 6 (𝜑 → (log‘𝑃) ∈ ℝ+)
2521, 24rerpdivcld 12971 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
2625renegcld 11555 . . . 4 (𝜑 → -((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
271, 26eqeltrid 2837 . . 3 (𝜑𝑅 ∈ ℝ)
28 ostth3.4 . . . . . . . . 9 (𝜑 → (𝐹𝑃) < 1)
29 1rp 12900 . . . . . . . . . 10 1 ∈ ℝ+
30 logltb 26556 . . . . . . . . . 10 (((𝐹𝑃) ∈ ℝ+ ∧ 1 ∈ ℝ+) → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3120, 29, 30sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3228, 31mpbid 232 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑃)) < (log‘1))
33 log1 26541 . . . . . . . 8 (log‘1) = 0
3432, 33breqtrdi 5136 . . . . . . 7 (𝜑 → (log‘(𝐹𝑃)) < 0)
3524rpcnd 12942 . . . . . . . 8 (𝜑 → (log‘𝑃) ∈ ℂ)
3635mul01d 11323 . . . . . . 7 (𝜑 → ((log‘𝑃) · 0) = 0)
3734, 36breqtrrd 5123 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) < ((log‘𝑃) · 0))
38 0red 11126 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
3921, 38, 24ltdivmuld 12991 . . . . . 6 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ (log‘(𝐹𝑃)) < ((log‘𝑃) · 0)))
4037, 39mpbird 257 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) < 0)
4125lt0neg1d 11697 . . . . 5 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ 0 < -((log‘(𝐹𝑃)) / (log‘𝑃))))
4240, 41mpbid 232 . . . 4 (𝜑 → 0 < -((log‘(𝐹𝑃)) / (log‘𝑃)))
4342, 1breqtrrdi 5137 . . 3 (𝜑 → 0 < 𝑅)
4427, 43elrpd 12937 . 2 (𝜑𝑅 ∈ ℝ+)
45 padic.j . . . . 5 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4612, 11, 45padicabvcxp 27590 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
473, 44, 46syl2anc 584 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
48 fveq2 6831 . . . . . . . . . 10 (𝑦 = 𝑃 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑃))
4948oveq1d 7370 . . . . . . . . 9 (𝑦 = 𝑃 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
50 eqid 2733 . . . . . . . . 9 (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
51 ovex 7388 . . . . . . . . 9 (((𝐽𝑃)‘𝑃)↑𝑐𝑅) ∈ V
5249, 50, 51fvmpt 6938 . . . . . . . 8 (𝑃 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5310, 52syl 17 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5445padicval 27575 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ) → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
553, 10, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
5616neneqd 2934 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 = 0)
5756iffalsed 4487 . . . . . . . . 9 (𝜑 → if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))) = (𝑃↑-(𝑃 pCnt 𝑃)))
588nncnd 12152 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5958exp1d 14055 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
6059oveq2d 7371 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
61 1z 12512 . . . . . . . . . . . . . 14 1 ∈ ℤ
62 pcid 16792 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑃 pCnt (𝑃↑1)) = 1)
633, 61, 62sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
6460, 63eqtr3d 2770 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑃) = 1)
6564negeqd 11365 . . . . . . . . . . 11 (𝜑 → -(𝑃 pCnt 𝑃) = -1)
6665oveq2d 7371 . . . . . . . . . 10 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃↑-1))
67 neg1z 12518 . . . . . . . . . . . 12 -1 ∈ ℤ
6867a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℤ)
6958, 16, 68cxpexpzd 26667 . . . . . . . . . 10 (𝜑 → (𝑃𝑐-1) = (𝑃↑-1))
7066, 69eqtr4d 2771 . . . . . . . . 9 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃𝑐-1))
7155, 57, 703eqtrd 2772 . . . . . . . 8 (𝜑 → ((𝐽𝑃)‘𝑃) = (𝑃𝑐-1))
7271oveq1d 7370 . . . . . . 7 (𝜑 → (((𝐽𝑃)‘𝑃)↑𝑐𝑅) = ((𝑃𝑐-1)↑𝑐𝑅))
7327recnd 11151 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
7473mulm1d 11580 . . . . . . . . . 10 (𝜑 → (-1 · 𝑅) = -𝑅)
751negeqi 11364 . . . . . . . . . . 11 -𝑅 = --((log‘(𝐹𝑃)) / (log‘𝑃))
7625recnd 11151 . . . . . . . . . . . 12 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℂ)
7776negnegd 11474 . . . . . . . . . . 11 (𝜑 → --((log‘(𝐹𝑃)) / (log‘𝑃)) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7875, 77eqtrid 2780 . . . . . . . . . 10 (𝜑 → -𝑅 = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7974, 78eqtrd 2768 . . . . . . . . 9 (𝜑 → (-1 · 𝑅) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
8079oveq2d 7371 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))))
818nnrpd 12938 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ+)
82 neg1rr 12122 . . . . . . . . . 10 -1 ∈ ℝ
8382a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
8481, 83, 73cxpmuld 26693 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = ((𝑃𝑐-1)↑𝑐𝑅))
8558, 16, 76cxpefd 26668 . . . . . . . . 9 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))))
8621recnd 11151 . . . . . . . . . . 11 (𝜑 → (log‘(𝐹𝑃)) ∈ ℂ)
8724rpne0d 12945 . . . . . . . . . . 11 (𝜑 → (log‘𝑃) ≠ 0)
8886, 35, 87divcan1d 11909 . . . . . . . . . 10 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃)) = (log‘(𝐹𝑃)))
8988fveq2d 6835 . . . . . . . . 9 (𝜑 → (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))) = (exp‘(log‘(𝐹𝑃))))
9020reeflogd 26580 . . . . . . . . 9 (𝜑 → (exp‘(log‘(𝐹𝑃))) = (𝐹𝑃))
9185, 89, 903eqtrd 2772 . . . . . . . 8 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (𝐹𝑃))
9280, 84, 913eqtr3d 2776 . . . . . . 7 (𝜑 → ((𝑃𝑐-1)↑𝑐𝑅) = (𝐹𝑃))
9353, 72, 923eqtrrd 2773 . . . . . 6 (𝜑 → (𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃))
94 fveq2 6831 . . . . . . 7 (𝑃 = 𝑝 → (𝐹𝑃) = (𝐹𝑝))
95 fveq2 6831 . . . . . . 7 (𝑃 = 𝑝 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
9694, 95eqeq12d 2749 . . . . . 6 (𝑃 = 𝑝 → ((𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) ↔ (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9793, 96syl5ibcom 245 . . . . 5 (𝜑 → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9897adantr 480 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
99 prmnn 16592 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
10099ad2antlr 727 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℕ)
101 nnq 12866 . . . . . . . 8 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
102100, 101syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℚ)
103 fveq2 6831 . . . . . . . . 9 (𝑦 = 𝑝 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑝))
104103oveq1d 7370 . . . . . . . 8 (𝑦 = 𝑝 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
105 ovex 7388 . . . . . . . 8 (((𝐽𝑃)‘𝑝)↑𝑐𝑅) ∈ V
106104, 50, 105fvmpt 6938 . . . . . . 7 (𝑝 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
107102, 106syl 17 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
10873ad2antrr 726 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑅 ∈ ℂ)
1091081cxpd 26663 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (1↑𝑐𝑅) = 1)
1103ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℙ)
11145padicval 27575 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
112110, 102, 111syl2anc 584 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
113100nnne0d 12186 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ≠ 0)
114113neneqd 2934 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 𝑝 = 0)
115114iffalsed 4487 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))) = (𝑃↑-(𝑃 pCnt 𝑝)))
116 pceq0 16790 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
1173, 99, 116syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
118 dvdsprm 16621 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
1195, 118sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
120119necon3bbid 2966 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑃𝑝𝑃𝑝))
121117, 120bitrd 279 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ 𝑃𝑝))
122121biimpar 477 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃 pCnt 𝑝) = 0)
123122negeqd 11365 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = -0)
124 neg0 11418 . . . . . . . . . . . 12 -0 = 0
125123, 124eqtrdi 2784 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = 0)
126125oveq2d 7371 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = (𝑃↑0))
12758ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℂ)
128127exp0d 14054 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑0) = 1)
129126, 128eqtrd 2768 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = 1)
130112, 115, 1293eqtrd 2772 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = 1)
131130oveq1d 7370 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (1↑𝑐𝑅))
132 2re 12210 . . . . . . . . . . . . 13 2 ∈ ℝ
133132a1i 11 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 2 ∈ ℝ)
134 ostth3.6 . . . . . . . . . . . . . 14 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
1352ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝐹𝐴)
13611, 13abvcl 20740 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ) → (𝐹𝑝) ∈ ℝ)
137135, 102, 136syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ)
13811, 13, 17abvgt0 20744 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑝 ≠ 0) → 0 < (𝐹𝑝))
139135, 102, 113, 138syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 0 < (𝐹𝑝))
140137, 139elrpd 12937 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ+)
141140adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) ∈ ℝ+)
14220ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) ∈ ℝ+)
143141, 142ifcld 4523 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) ∈ ℝ+)
144134, 143eqeltrid 2837 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ+)
145144rprecred 12951 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (1 / 𝑆) ∈ ℝ)
146 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
14728ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) < 1)
148 breq1 5098 . . . . . . . . . . . . . . . 16 ((𝐹𝑝) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑝) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
149 breq1 5098 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑃) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
150148, 149ifboth 4516 . . . . . . . . . . . . . . 15 (((𝐹𝑝) < 1 ∧ (𝐹𝑃) < 1) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
151146, 147, 150syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
152134, 151eqbrtrid 5130 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 < 1)
153144reclt1d 12953 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑆 < 1 ↔ 1 < (1 / 𝑆)))
154152, 153mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 1 < (1 / 𝑆))
155 expnbnd 14146 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (1 / 𝑆) ∈ ℝ ∧ 1 < (1 / 𝑆)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
156133, 145, 154, 155syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
157144rpcnd 12942 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℂ)
158157adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ∈ ℂ)
159144rpne0d 12945 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ≠ 0)
160159adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ≠ 0)
161 nnz 12500 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
162161adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
163158, 160, 162exprecd 14068 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) = (1 / (𝑆𝑘)))
1642ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝐹𝐴)
165 ax-1ne0 11086 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
16612qrng1 27580 . . . . . . . . . . . . . . . . . . 19 1 = (1r𝑄)
16711, 166, 17abv1z 20748 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
168164, 165, 167sylancl 586 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) = 1)
1698ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℕ)
170 nnnn0 12399 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
171 nnexpcl 13988 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
172169, 170, 171syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℕ)
173172nnzd 12505 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℤ)
17499ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℕ)
175 nnexpcl 13988 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
176174, 170, 175syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
177176nnzd 12505 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
178 bezout 16461 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
179173, 177, 178syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
180 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃𝑝)
1813ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℙ)
182 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
183 prmrp 16630 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
184181, 182, 183syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
185180, 184mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑃 gcd 𝑝) = 1)
186185adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃 gcd 𝑝) = 1)
187169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℕ)
188174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
189 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
190 rppwr 16478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
191187, 188, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
193192adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
194193eqeq1d 2735 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ↔ 1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
1952ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝐹𝐴)
196172adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℕ)
197 nnq 12866 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℚ)
198196, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℚ)
199 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℤ)
200 zq 12858 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ℤ → 𝑎 ∈ ℚ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℚ)
202 qmulcl 12871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
203198, 201, 202syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
204176adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℕ)
205 nnq 12866 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝𝑘) ∈ ℕ → (𝑝𝑘) ∈ ℚ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℚ)
207 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℤ)
208 zq 12858 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ℤ → 𝑏 ∈ ℚ)
209207, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℚ)
210 qmulcl 12871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
211206, 209, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
212 qaddcl 12869 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
213203, 211, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
21411, 13abvcl 20740 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
215195, 213, 214syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
21611, 13abvcl 20740 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
217195, 203, 216syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
21811, 13abvcl 20740 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
219195, 211, 218syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
220217, 219readdcld 11152 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ∈ ℝ)
221 rpexpcl 13994 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℝ+𝑘 ∈ ℤ) → (𝑆𝑘) ∈ ℝ+)
222144, 161, 221syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ+)
223222rpred 12940 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
224223adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑆𝑘) ∈ ℝ)
225 remulcl 11102 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ (𝑆𝑘) ∈ ℝ) → (2 · (𝑆𝑘)) ∈ ℝ)
226132, 224, 225sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) ∈ ℝ)
227 qex 12865 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℚ ∈ V
228 cnfldadd 21306 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 + = (+g‘ℂfld)
22912, 228ressplusg 17202 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ∈ V → + = (+g𝑄))
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 + = (+g𝑄)
23111, 13, 230abvtri 20746 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
232195, 203, 211, 231syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
233 cnfldmul 21308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 · = (.r‘ℂfld)
23412, 233ressmulr 17218 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (ℚ ∈ V → · = (.r𝑄))
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 · = (.r𝑄)
23611, 13, 235abvmul 20745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
237195, 198, 201, 236syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
23810ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑃 ∈ ℚ)
239170ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℕ0)
24012, 11qabvexp 27584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
241195, 238, 239, 240syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
242241oveq1d 7370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
243237, 242eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
244195, 238, 14syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ)
245244, 239reexpcld 14077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℝ)
24611, 13abvcl 20740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹𝑎) ∈ ℝ)
247195, 201, 246syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ∈ ℝ)
248245, 247remulcld 11153 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ∈ ℝ)
249 elz 12481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ)))
250249simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℤ → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
251250adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
25211, 17abv0 20747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐹𝐴 → (𝐹‘0) = 0)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐹‘0) = 0)
254 0le1 11651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ≤ 1
255253, 254eqbrtrdi 5134 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐹‘0) ≤ 1)
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑎 ∈ ℤ) → (𝐹‘0) ≤ 1)
257 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
258257breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = 0 → ((𝐹𝑎) ≤ 1 ↔ (𝐹‘0) ≤ 1))
259256, 258syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 → (𝐹𝑎) ≤ 1))
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
261 nnq 12866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
26211, 13abvcl 20740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
2632, 261, 262syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
264 1re 11123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1 ∈ ℝ
265 lenlt 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
266263, 264, 265sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
267266ralbidva 3154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)))
268260, 267mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
269 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
270269breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = 𝑎 → ((𝐹𝑛) ≤ 1 ↔ (𝐹𝑎) ≤ 1))
271270rspccv 3570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
272268, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
273272adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
2742adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝐹𝐴)
275200ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝑎 ∈ ℚ)
276 eqid 2733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (invg𝑄) = (invg𝑄)
27711, 13, 276abvneg 20750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
278274, 275, 277syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
279 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = ((invg𝑄)‘𝑎) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑎)))
280279breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = ((invg𝑄)‘𝑎) → ((𝐹𝑛) ≤ 1 ↔ (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
281268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
28212qrngneg 27581 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ ℚ → ((invg𝑄)‘𝑎) = -𝑎)
283275, 282syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) = -𝑎)
284 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → -𝑎 ∈ ℕ)
285283, 284eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) ∈ ℕ)
286280, 281, 285rspcdva 3574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1)
287278, 286eqbrtrrd 5119 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹𝑎) ≤ 1)
288287expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
289259, 273, 2883jaod 1431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → ((𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ) → (𝐹𝑎) ≤ 1))
290251, 289mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ≤ 1)
291290ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
292291ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
293 rsp 3221 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝑎 ∈ ℤ → (𝐹𝑎) ≤ 1))
294292, 199, 293sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ≤ 1)
295264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 1 ∈ ℝ)
296161ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℤ)
29719ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑃))
298 expgt0 14009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑃) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑃)) → 0 < ((𝐹𝑃)↑𝑘))
299244, 296, 297, 298syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑃)↑𝑘))
300 lemul2 11985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑎) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑃)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑃)↑𝑘))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
301247, 295, 245, 299, 300syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
302294, 301mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1))
303245recnd 11151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℂ)
304303mulridd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · 1) = ((𝐹𝑃)↑𝑘))
305302, 304breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ ((𝐹𝑃)↑𝑘))
306144rpred 12940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ)
307306adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑆 ∈ ℝ)
308142adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ+)
309308rpge0d 12944 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑃))
310174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℕ)
311310, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℚ)
312195, 311, 136syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ)
313 max1 13091 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
314244, 312, 313syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
315314, 134breqtrrdi 5137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ 𝑆)
316 leexp1a 14089 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑃) ∧ (𝐹𝑃) ≤ 𝑆)) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
317244, 307, 239, 309, 315, 316syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
318248, 245, 224, 305, 317letrd 11281 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (𝑆𝑘))
319243, 318eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ≤ (𝑆𝑘))
32011, 13, 235abvmul 20745 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
321195, 206, 209, 320syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
32212, 11qabvexp 27584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
323195, 311, 239, 322syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
324323oveq1d 7370 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
325321, 324eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
326312, 239reexpcld 14077 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℝ)
32711, 13abvcl 20740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑏 ∈ ℚ) → (𝐹𝑏) ∈ ℝ)
328195, 209, 327syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ∈ ℝ)
329326, 328remulcld 11153 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ∈ ℝ)
330 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
331330breq1d 5105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = 𝑏 → ((𝐹𝑎) ≤ 1 ↔ (𝐹𝑏) ≤ 1))
332331, 292, 207rspcdva 3574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ≤ 1)
333310nnne0d 12186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ≠ 0)
334195, 311, 333, 138syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑝))
335 expgt0 14009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑝) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑝)) → 0 < ((𝐹𝑝)↑𝑘))
336312, 296, 334, 335syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑝)↑𝑘))
337 lemul2 11985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑏) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑝)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑝)↑𝑘))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
338328, 295, 326, 336, 337syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
339332, 338mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1))
340326recnd 11151 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℂ)
341340mulridd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · 1) = ((𝐹𝑝)↑𝑘))
342339, 341breqtrd 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ ((𝐹𝑝)↑𝑘))
343141adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ+)
344343rpge0d 12944 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑝))
345 max2 13093 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
346244, 312, 345syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
347346, 134breqtrrdi 5137 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ 𝑆)
348 leexp1a 14089 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑝) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑝) ∧ (𝐹𝑝) ≤ 𝑆)) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
349312, 307, 239, 344, 347, 348syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
350329, 326, 224, 342, 349letrd 11281 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (𝑆𝑘))
351325, 350eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ≤ (𝑆𝑘))
352217, 219, 224, 224, 319, 351le2addd 11747 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ ((𝑆𝑘) + (𝑆𝑘)))
353222rpcnd 12942 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℂ)
3543532timesd 12375 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
355354adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
356352, 355breqtrrd 5123 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
357215, 220, 226, 232, 356letrd 11281 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
358 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) = (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
359358breq1d 5105 . . . . . . . . . . . . . . . . . . . . . 22 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → ((𝐹‘1) ≤ (2 · (𝑆𝑘)) ↔ (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘))))
360357, 359syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
361194, 360sylbid 240 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
362361anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
363362rexlimdvva 3190 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
364179, 363mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ≤ (2 · (𝑆𝑘)))
365168, 364eqbrtrrd 5119 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 1 ≤ (2 · (𝑆𝑘)))
366222rpregt0d 12946 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)))
367 ledivmul2 12012 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘))) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
368264, 132, 366, 367mp3an12i 1467 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
369365, 368mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (1 / (𝑆𝑘)) ≤ 2)
370163, 369eqbrtrd 5117 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ≤ 2)
371 reexpcl 13992 . . . . . . . . . . . . . . . 16 (((1 / 𝑆) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
372145, 170, 371syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
373 lenlt 11202 . . . . . . . . . . . . . . 15 ((((1 / 𝑆)↑𝑘) ∈ ℝ ∧ 2 ∈ ℝ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
374372, 132, 373sylancl 586 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
375370, 374mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ¬ 2 < ((1 / 𝑆)↑𝑘))
376375pm2.21d 121 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
377376rexlimdva 3134 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
378156, 377mpd 15 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ¬ (𝐹𝑝) < 1)
379378expr 456 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) < 1 → ¬ (𝐹𝑝) < 1))
380379pm2.01d 190 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ (𝐹𝑝) < 1)
381 fveq2 6831 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
382381breq2d 5107 . . . . . . . . . 10 (𝑛 = 𝑝 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑝)))
383382notbid 318 . . . . . . . . 9 (𝑛 = 𝑝 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑝)))
384260ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
385383, 384, 100rspcdva 3574 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 1 < (𝐹𝑝))
386 lttri3 11207 . . . . . . . . 9 (((𝐹𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
387137, 264, 386sylancl 586 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
388380, 385, 387mpbir2and 713 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = 1)
389109, 131, 3883eqtr4d 2778 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (𝐹𝑝))
390107, 389eqtr2d 2769 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
391390ex 412 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
39298, 391pm2.61dne 3015 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
39312, 11, 2, 47, 392ostthlem2 27586 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
394 oveq2 7363 . . . 4 (𝑎 = 𝑅 → (((𝐽𝑃)‘𝑦)↑𝑐𝑎) = (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
395394mpteq2dv 5189 . . 3 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
396395rspceeqv 3596 . 2 ((𝑅 ∈ ℝ+𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
39744, 393, 396syl2anc 584 1 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  Vcvv 3437  ifcif 4476   class class class wbr 5095  cmpt 5176  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  -cneg 11356   / cdiv 11785  cn 12136  2c2 12191  0cn0 12392  cz 12479  cuz 12742  cq 12852  +crp 12896  cexp 13975  expce 15975  cdvds 16170   gcd cgcd 16412  cprime 16589   pCnt cpc 16755  s cress 17148  +gcplusg 17168  .rcmulr 17169  invgcminusg 18855  AbsValcabv 20732  fldccnfld 21300  logclog 26510  𝑐ccxp 26511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096  ax-mulf 11097
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-tpos 8165  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-dvds 16171  df-gcd 16413  df-prm 16590  df-pc 16756  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-mulg 18989  df-subg 19044  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-cring 20162  df-oppr 20264  df-dvdsr 20284  df-unit 20285  df-invr 20315  df-dvr 20328  df-subrng 20470  df-subrg 20494  df-drng 20655  df-abv 20733  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512  df-cxp 26513
This theorem is referenced by:  ostth  27597
  Copyright terms: Public domain W3C validator