MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Visualization version   GIF version

Theorem ostth3 27525
Description: - Lemma for ostth 27526: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth3.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth3.3 (𝜑𝑃 ∈ ℙ)
ostth3.4 (𝜑 → (𝐹𝑃) < 1)
ostth3.5 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
ostth3.6 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
Assertion
Ref Expression
ostth3 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑛,𝑝,𝑦   𝑛,𝐾   𝑥,𝑛,𝑎,𝑝,𝑞,𝑦,𝜑   𝐽,𝑎,𝑝,𝑦   𝑆,𝑎   𝐴,𝑎,𝑛,𝑝,𝑞,𝑥,𝑦   𝑄,𝑛,𝑥,𝑦   𝐹,𝑎,𝑛,𝑝,𝑞,𝑦   𝑃,𝑎,𝑝,𝑞,𝑥,𝑦   𝑅,𝑎,𝑝,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑃(𝑛)   𝑄(𝑞,𝑝,𝑎)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑦,𝑛,𝑞,𝑝)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑝,𝑎)

Proof of Theorem ostth3
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
2 ostth.1 . . . . . . . . 9 (𝜑𝐹𝐴)
3 ostth3.3 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
4 prmuz2 16642 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
53, 4syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (ℤ‘2))
6 eluz2b2 12856 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
75, 6sylib 218 . . . . . . . . . . 11 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
87simpld 494 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
9 nnq 12897 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℚ)
11 qabsabv.a . . . . . . . . . 10 𝐴 = (AbsVal‘𝑄)
12 qrng.q . . . . . . . . . . 11 𝑄 = (ℂflds ℚ)
1312qrngbas 27506 . . . . . . . . . 10 ℚ = (Base‘𝑄)
1411, 13abvcl 20701 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ) → (𝐹𝑃) ∈ ℝ)
152, 10, 14syl2anc 584 . . . . . . . 8 (𝜑 → (𝐹𝑃) ∈ ℝ)
168nnne0d 12212 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
1712qrng0 27508 . . . . . . . . . 10 0 = (0g𝑄)
1811, 13, 17abvgt0 20705 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) → 0 < (𝐹𝑃))
192, 10, 16, 18syl3anc 1373 . . . . . . . 8 (𝜑 → 0 < (𝐹𝑃))
2015, 19elrpd 12968 . . . . . . 7 (𝜑 → (𝐹𝑃) ∈ ℝ+)
2120relogcld 26508 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) ∈ ℝ)
228nnred 12177 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
237simprd 495 . . . . . . 7 (𝜑 → 1 < 𝑃)
2422, 23rplogcld 26514 . . . . . 6 (𝜑 → (log‘𝑃) ∈ ℝ+)
2521, 24rerpdivcld 13002 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
2625renegcld 11581 . . . 4 (𝜑 → -((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
271, 26eqeltrid 2832 . . 3 (𝜑𝑅 ∈ ℝ)
28 ostth3.4 . . . . . . . . 9 (𝜑 → (𝐹𝑃) < 1)
29 1rp 12931 . . . . . . . . . 10 1 ∈ ℝ+
30 logltb 26485 . . . . . . . . . 10 (((𝐹𝑃) ∈ ℝ+ ∧ 1 ∈ ℝ+) → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3120, 29, 30sylancl 586 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3228, 31mpbid 232 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑃)) < (log‘1))
33 log1 26470 . . . . . . . 8 (log‘1) = 0
3432, 33breqtrdi 5143 . . . . . . 7 (𝜑 → (log‘(𝐹𝑃)) < 0)
3524rpcnd 12973 . . . . . . . 8 (𝜑 → (log‘𝑃) ∈ ℂ)
3635mul01d 11349 . . . . . . 7 (𝜑 → ((log‘𝑃) · 0) = 0)
3734, 36breqtrrd 5130 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) < ((log‘𝑃) · 0))
38 0red 11153 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
3921, 38, 24ltdivmuld 13022 . . . . . 6 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ (log‘(𝐹𝑃)) < ((log‘𝑃) · 0)))
4037, 39mpbird 257 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) < 0)
4125lt0neg1d 11723 . . . . 5 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ 0 < -((log‘(𝐹𝑃)) / (log‘𝑃))))
4240, 41mpbid 232 . . . 4 (𝜑 → 0 < -((log‘(𝐹𝑃)) / (log‘𝑃)))
4342, 1breqtrrdi 5144 . . 3 (𝜑 → 0 < 𝑅)
4427, 43elrpd 12968 . 2 (𝜑𝑅 ∈ ℝ+)
45 padic.j . . . . 5 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4612, 11, 45padicabvcxp 27519 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
473, 44, 46syl2anc 584 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
48 fveq2 6840 . . . . . . . . . 10 (𝑦 = 𝑃 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑃))
4948oveq1d 7384 . . . . . . . . 9 (𝑦 = 𝑃 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
50 eqid 2729 . . . . . . . . 9 (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
51 ovex 7402 . . . . . . . . 9 (((𝐽𝑃)‘𝑃)↑𝑐𝑅) ∈ V
5249, 50, 51fvmpt 6950 . . . . . . . 8 (𝑃 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5310, 52syl 17 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5445padicval 27504 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ) → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
553, 10, 54syl2anc 584 . . . . . . . . 9 (𝜑 → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
5616neneqd 2930 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 = 0)
5756iffalsed 4495 . . . . . . . . 9 (𝜑 → if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))) = (𝑃↑-(𝑃 pCnt 𝑃)))
588nncnd 12178 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5958exp1d 14082 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
6059oveq2d 7385 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
61 1z 12539 . . . . . . . . . . . . . 14 1 ∈ ℤ
62 pcid 16820 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑃 pCnt (𝑃↑1)) = 1)
633, 61, 62sylancl 586 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
6460, 63eqtr3d 2766 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑃) = 1)
6564negeqd 11391 . . . . . . . . . . 11 (𝜑 → -(𝑃 pCnt 𝑃) = -1)
6665oveq2d 7385 . . . . . . . . . 10 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃↑-1))
67 neg1z 12545 . . . . . . . . . . . 12 -1 ∈ ℤ
6867a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℤ)
6958, 16, 68cxpexpzd 26596 . . . . . . . . . 10 (𝜑 → (𝑃𝑐-1) = (𝑃↑-1))
7066, 69eqtr4d 2767 . . . . . . . . 9 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃𝑐-1))
7155, 57, 703eqtrd 2768 . . . . . . . 8 (𝜑 → ((𝐽𝑃)‘𝑃) = (𝑃𝑐-1))
7271oveq1d 7384 . . . . . . 7 (𝜑 → (((𝐽𝑃)‘𝑃)↑𝑐𝑅) = ((𝑃𝑐-1)↑𝑐𝑅))
7327recnd 11178 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
7473mulm1d 11606 . . . . . . . . . 10 (𝜑 → (-1 · 𝑅) = -𝑅)
751negeqi 11390 . . . . . . . . . . 11 -𝑅 = --((log‘(𝐹𝑃)) / (log‘𝑃))
7625recnd 11178 . . . . . . . . . . . 12 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℂ)
7776negnegd 11500 . . . . . . . . . . 11 (𝜑 → --((log‘(𝐹𝑃)) / (log‘𝑃)) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7875, 77eqtrid 2776 . . . . . . . . . 10 (𝜑 → -𝑅 = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7974, 78eqtrd 2764 . . . . . . . . 9 (𝜑 → (-1 · 𝑅) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
8079oveq2d 7385 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))))
818nnrpd 12969 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ+)
82 neg1rr 12148 . . . . . . . . . 10 -1 ∈ ℝ
8382a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
8481, 83, 73cxpmuld 26622 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = ((𝑃𝑐-1)↑𝑐𝑅))
8558, 16, 76cxpefd 26597 . . . . . . . . 9 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))))
8621recnd 11178 . . . . . . . . . . 11 (𝜑 → (log‘(𝐹𝑃)) ∈ ℂ)
8724rpne0d 12976 . . . . . . . . . . 11 (𝜑 → (log‘𝑃) ≠ 0)
8886, 35, 87divcan1d 11935 . . . . . . . . . 10 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃)) = (log‘(𝐹𝑃)))
8988fveq2d 6844 . . . . . . . . 9 (𝜑 → (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))) = (exp‘(log‘(𝐹𝑃))))
9020reeflogd 26509 . . . . . . . . 9 (𝜑 → (exp‘(log‘(𝐹𝑃))) = (𝐹𝑃))
9185, 89, 903eqtrd 2768 . . . . . . . 8 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (𝐹𝑃))
9280, 84, 913eqtr3d 2772 . . . . . . 7 (𝜑 → ((𝑃𝑐-1)↑𝑐𝑅) = (𝐹𝑃))
9353, 72, 923eqtrrd 2769 . . . . . 6 (𝜑 → (𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃))
94 fveq2 6840 . . . . . . 7 (𝑃 = 𝑝 → (𝐹𝑃) = (𝐹𝑝))
95 fveq2 6840 . . . . . . 7 (𝑃 = 𝑝 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
9694, 95eqeq12d 2745 . . . . . 6 (𝑃 = 𝑝 → ((𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) ↔ (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9793, 96syl5ibcom 245 . . . . 5 (𝜑 → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9897adantr 480 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
99 prmnn 16620 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
10099ad2antlr 727 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℕ)
101 nnq 12897 . . . . . . . 8 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
102100, 101syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℚ)
103 fveq2 6840 . . . . . . . . 9 (𝑦 = 𝑝 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑝))
104103oveq1d 7384 . . . . . . . 8 (𝑦 = 𝑝 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
105 ovex 7402 . . . . . . . 8 (((𝐽𝑃)‘𝑝)↑𝑐𝑅) ∈ V
106104, 50, 105fvmpt 6950 . . . . . . 7 (𝑝 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
107102, 106syl 17 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
10873ad2antrr 726 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑅 ∈ ℂ)
1091081cxpd 26592 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (1↑𝑐𝑅) = 1)
1103ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℙ)
11145padicval 27504 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
112110, 102, 111syl2anc 584 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
113100nnne0d 12212 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ≠ 0)
114113neneqd 2930 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 𝑝 = 0)
115114iffalsed 4495 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))) = (𝑃↑-(𝑃 pCnt 𝑝)))
116 pceq0 16818 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
1173, 99, 116syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
118 dvdsprm 16649 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
1195, 118sylan 580 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
120119necon3bbid 2962 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑃𝑝𝑃𝑝))
121117, 120bitrd 279 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ 𝑃𝑝))
122121biimpar 477 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃 pCnt 𝑝) = 0)
123122negeqd 11391 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = -0)
124 neg0 11444 . . . . . . . . . . . 12 -0 = 0
125123, 124eqtrdi 2780 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = 0)
126125oveq2d 7385 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = (𝑃↑0))
12758ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℂ)
128127exp0d 14081 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑0) = 1)
129126, 128eqtrd 2764 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = 1)
130112, 115, 1293eqtrd 2768 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = 1)
131130oveq1d 7384 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (1↑𝑐𝑅))
132 2re 12236 . . . . . . . . . . . . 13 2 ∈ ℝ
133132a1i 11 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 2 ∈ ℝ)
134 ostth3.6 . . . . . . . . . . . . . 14 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
1352ad2antrr 726 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝐹𝐴)
13611, 13abvcl 20701 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ) → (𝐹𝑝) ∈ ℝ)
137135, 102, 136syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ)
13811, 13, 17abvgt0 20705 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑝 ≠ 0) → 0 < (𝐹𝑝))
139135, 102, 113, 138syl3anc 1373 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 0 < (𝐹𝑝))
140137, 139elrpd 12968 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ+)
141140adantrr 717 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) ∈ ℝ+)
14220ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) ∈ ℝ+)
143141, 142ifcld 4531 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) ∈ ℝ+)
144134, 143eqeltrid 2832 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ+)
145144rprecred 12982 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (1 / 𝑆) ∈ ℝ)
146 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
14728ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) < 1)
148 breq1 5105 . . . . . . . . . . . . . . . 16 ((𝐹𝑝) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑝) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
149 breq1 5105 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑃) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
150148, 149ifboth 4524 . . . . . . . . . . . . . . 15 (((𝐹𝑝) < 1 ∧ (𝐹𝑃) < 1) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
151146, 147, 150syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
152134, 151eqbrtrid 5137 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 < 1)
153144reclt1d 12984 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑆 < 1 ↔ 1 < (1 / 𝑆)))
154152, 153mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 1 < (1 / 𝑆))
155 expnbnd 14173 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (1 / 𝑆) ∈ ℝ ∧ 1 < (1 / 𝑆)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
156133, 145, 154, 155syl3anc 1373 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
157144rpcnd 12973 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℂ)
158157adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ∈ ℂ)
159144rpne0d 12976 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ≠ 0)
160159adantr 480 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ≠ 0)
161 nnz 12526 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
162161adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
163158, 160, 162exprecd 14095 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) = (1 / (𝑆𝑘)))
1642ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝐹𝐴)
165 ax-1ne0 11113 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
16612qrng1 27509 . . . . . . . . . . . . . . . . . . 19 1 = (1r𝑄)
16711, 166, 17abv1z 20709 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
168164, 165, 167sylancl 586 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) = 1)
1698ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℕ)
170 nnnn0 12425 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
171 nnexpcl 14015 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
172169, 170, 171syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℕ)
173172nnzd 12532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℤ)
17499ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℕ)
175 nnexpcl 14015 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
176174, 170, 175syl2an 596 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
177176nnzd 12532 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
178 bezout 16489 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
179173, 177, 178syl2anc 584 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
180 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃𝑝)
1813ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℙ)
182 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
183 prmrp 16658 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
184181, 182, 183syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
185180, 184mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑃 gcd 𝑝) = 1)
186185adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃 gcd 𝑝) = 1)
187169adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℕ)
188174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
189 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
190 rppwr 16506 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
191187, 188, 189, 190syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
193192adantrr 717 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
194193eqeq1d 2731 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ↔ 1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
1952ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝐹𝐴)
196172adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℕ)
197 nnq 12897 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℚ)
198196, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℚ)
199 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℤ)
200 zq 12889 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ℤ → 𝑎 ∈ ℚ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℚ)
202 qmulcl 12902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
203198, 201, 202syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
204176adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℕ)
205 nnq 12897 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝𝑘) ∈ ℕ → (𝑝𝑘) ∈ ℚ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℚ)
207 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℤ)
208 zq 12889 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ℤ → 𝑏 ∈ ℚ)
209207, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℚ)
210 qmulcl 12902 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
211206, 209, 210syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
212 qaddcl 12900 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
213203, 211, 212syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
21411, 13abvcl 20701 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
215195, 213, 214syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
21611, 13abvcl 20701 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
217195, 203, 216syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
21811, 13abvcl 20701 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
219195, 211, 218syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
220217, 219readdcld 11179 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ∈ ℝ)
221 rpexpcl 14021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℝ+𝑘 ∈ ℤ) → (𝑆𝑘) ∈ ℝ+)
222144, 161, 221syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ+)
223222rpred 12971 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
224223adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑆𝑘) ∈ ℝ)
225 remulcl 11129 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ (𝑆𝑘) ∈ ℝ) → (2 · (𝑆𝑘)) ∈ ℝ)
226132, 224, 225sylancr 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) ∈ ℝ)
227 qex 12896 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℚ ∈ V
228 cnfldadd 21246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 + = (+g‘ℂfld)
22912, 228ressplusg 17230 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ∈ V → + = (+g𝑄))
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 + = (+g𝑄)
23111, 13, 230abvtri 20707 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
232195, 203, 211, 231syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
233 cnfldmul 21248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 · = (.r‘ℂfld)
23412, 233ressmulr 17246 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (ℚ ∈ V → · = (.r𝑄))
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 · = (.r𝑄)
23611, 13, 235abvmul 20706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
237195, 198, 201, 236syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
23810ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑃 ∈ ℚ)
239170ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℕ0)
24012, 11qabvexp 27513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
241195, 238, 239, 240syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
242241oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
243237, 242eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
244195, 238, 14syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ)
245244, 239reexpcld 14104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℝ)
24611, 13abvcl 20701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹𝑎) ∈ ℝ)
247195, 201, 246syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ∈ ℝ)
248245, 247remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ∈ ℝ)
249 elz 12507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ)))
250249simprbi 496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℤ → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
251250adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
25211, 17abv0 20708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐹𝐴 → (𝐹‘0) = 0)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐹‘0) = 0)
254 0le1 11677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ≤ 1
255253, 254eqbrtrdi 5141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐹‘0) ≤ 1)
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑎 ∈ ℤ) → (𝐹‘0) ≤ 1)
257 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
258257breq1d 5112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = 0 → ((𝐹𝑎) ≤ 1 ↔ (𝐹‘0) ≤ 1))
259256, 258syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 → (𝐹𝑎) ≤ 1))
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
261 nnq 12897 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
26211, 13abvcl 20701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
2632, 261, 262syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
264 1re 11150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1 ∈ ℝ
265 lenlt 11228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
266263, 264, 265sylancl 586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
267266ralbidva 3154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)))
268260, 267mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
269 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
270269breq1d 5112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = 𝑎 → ((𝐹𝑛) ≤ 1 ↔ (𝐹𝑎) ≤ 1))
271270rspccv 3582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
272268, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
273272adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
2742adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝐹𝐴)
275200ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝑎 ∈ ℚ)
276 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (invg𝑄) = (invg𝑄)
27711, 13, 276abvneg 20711 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
278274, 275, 277syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
279 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = ((invg𝑄)‘𝑎) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑎)))
280279breq1d 5112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = ((invg𝑄)‘𝑎) → ((𝐹𝑛) ≤ 1 ↔ (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
281268adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
28212qrngneg 27510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ ℚ → ((invg𝑄)‘𝑎) = -𝑎)
283275, 282syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) = -𝑎)
284 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → -𝑎 ∈ ℕ)
285283, 284eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) ∈ ℕ)
286280, 281, 285rspcdva 3586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1)
287278, 286eqbrtrrd 5126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹𝑎) ≤ 1)
288287expr 456 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
289259, 273, 2883jaod 1431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → ((𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ) → (𝐹𝑎) ≤ 1))
290251, 289mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ≤ 1)
291290ralrimiva 3125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
292291ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
293 rsp 3223 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝑎 ∈ ℤ → (𝐹𝑎) ≤ 1))
294292, 199, 293sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ≤ 1)
295264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 1 ∈ ℝ)
296161ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℤ)
29719ad3antrrr 730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑃))
298 expgt0 14036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑃) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑃)) → 0 < ((𝐹𝑃)↑𝑘))
299244, 296, 297, 298syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑃)↑𝑘))
300 lemul2 12011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑎) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑃)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑃)↑𝑘))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
301247, 295, 245, 299, 300syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
302294, 301mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1))
303245recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℂ)
304303mulridd 11167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · 1) = ((𝐹𝑃)↑𝑘))
305302, 304breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ ((𝐹𝑃)↑𝑘))
306144rpred 12971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ)
307306adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑆 ∈ ℝ)
308142adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ+)
309308rpge0d 12975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑃))
310174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℕ)
311310, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℚ)
312195, 311, 136syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ)
313 max1 13121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
314244, 312, 313syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
315314, 134breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ 𝑆)
316 leexp1a 14116 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑃) ∧ (𝐹𝑃) ≤ 𝑆)) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
317244, 307, 239, 309, 315, 316syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
318248, 245, 224, 305, 317letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (𝑆𝑘))
319243, 318eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ≤ (𝑆𝑘))
32011, 13, 235abvmul 20706 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
321195, 206, 209, 320syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
32212, 11qabvexp 27513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
323195, 311, 239, 322syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
324323oveq1d 7384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
325321, 324eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
326312, 239reexpcld 14104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℝ)
32711, 13abvcl 20701 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑏 ∈ ℚ) → (𝐹𝑏) ∈ ℝ)
328195, 209, 327syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ∈ ℝ)
329326, 328remulcld 11180 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ∈ ℝ)
330 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
331330breq1d 5112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = 𝑏 → ((𝐹𝑎) ≤ 1 ↔ (𝐹𝑏) ≤ 1))
332331, 292, 207rspcdva 3586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ≤ 1)
333310nnne0d 12212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ≠ 0)
334195, 311, 333, 138syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑝))
335 expgt0 14036 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑝) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑝)) → 0 < ((𝐹𝑝)↑𝑘))
336312, 296, 334, 335syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑝)↑𝑘))
337 lemul2 12011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑏) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑝)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑝)↑𝑘))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
338328, 295, 326, 336, 337syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
339332, 338mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1))
340326recnd 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℂ)
341340mulridd 11167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · 1) = ((𝐹𝑝)↑𝑘))
342339, 341breqtrd 5128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ ((𝐹𝑝)↑𝑘))
343141adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ+)
344343rpge0d 12975 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑝))
345 max2 13123 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
346244, 312, 345syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
347346, 134breqtrrdi 5144 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ 𝑆)
348 leexp1a 14116 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑝) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑝) ∧ (𝐹𝑝) ≤ 𝑆)) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
349312, 307, 239, 344, 347, 348syl32anc 1380 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
350329, 326, 224, 342, 349letrd 11307 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (𝑆𝑘))
351325, 350eqbrtrd 5124 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ≤ (𝑆𝑘))
352217, 219, 224, 224, 319, 351le2addd 11773 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ ((𝑆𝑘) + (𝑆𝑘)))
353222rpcnd 12973 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℂ)
3543532timesd 12401 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
355354adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
356352, 355breqtrrd 5130 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
357215, 220, 226, 232, 356letrd 11307 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
358 fveq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) = (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
359358breq1d 5112 . . . . . . . . . . . . . . . . . . . . . 22 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → ((𝐹‘1) ≤ (2 · (𝑆𝑘)) ↔ (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘))))
360357, 359syl5ibrcom 247 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
361194, 360sylbid 240 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
362361anassrs 467 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
363362rexlimdvva 3192 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
364179, 363mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ≤ (2 · (𝑆𝑘)))
365168, 364eqbrtrrd 5126 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 1 ≤ (2 · (𝑆𝑘)))
366222rpregt0d 12977 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)))
367 ledivmul2 12038 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘))) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
368264, 132, 366, 367mp3an12i 1467 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
369365, 368mpbird 257 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (1 / (𝑆𝑘)) ≤ 2)
370163, 369eqbrtrd 5124 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ≤ 2)
371 reexpcl 14019 . . . . . . . . . . . . . . . 16 (((1 / 𝑆) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
372145, 170, 371syl2an 596 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
373 lenlt 11228 . . . . . . . . . . . . . . 15 ((((1 / 𝑆)↑𝑘) ∈ ℝ ∧ 2 ∈ ℝ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
374372, 132, 373sylancl 586 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
375370, 374mpbid 232 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ¬ 2 < ((1 / 𝑆)↑𝑘))
376375pm2.21d 121 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
377376rexlimdva 3134 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
378156, 377mpd 15 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ¬ (𝐹𝑝) < 1)
379378expr 456 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) < 1 → ¬ (𝐹𝑝) < 1))
380379pm2.01d 190 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ (𝐹𝑝) < 1)
381 fveq2 6840 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
382381breq2d 5114 . . . . . . . . . 10 (𝑛 = 𝑝 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑝)))
383382notbid 318 . . . . . . . . 9 (𝑛 = 𝑝 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑝)))
384260ad2antrr 726 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
385383, 384, 100rspcdva 3586 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 1 < (𝐹𝑝))
386 lttri3 11233 . . . . . . . . 9 (((𝐹𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
387137, 264, 386sylancl 586 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
388380, 385, 387mpbir2and 713 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = 1)
389109, 131, 3883eqtr4d 2774 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (𝐹𝑝))
390107, 389eqtr2d 2765 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
391390ex 412 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
39298, 391pm2.61dne 3011 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
39312, 11, 2, 47, 392ostthlem2 27515 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
394 oveq2 7377 . . . 4 (𝑎 = 𝑅 → (((𝐽𝑃)‘𝑦)↑𝑐𝑎) = (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
395394mpteq2dv 5196 . . 3 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
396395rspceeqv 3608 . 2 ((𝑅 ∈ ℝ+𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
39744, 393, 396syl2anc 584 1 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3444  ifcif 4484   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  -cneg 11382   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  cq 12883  +crp 12927  cexp 14002  expce 16003  cdvds 16198   gcd cgcd 16440  cprime 16617   pCnt cpc 16783  s cress 17176  +gcplusg 17196  .rcmulr 17197  invgcminusg 18842  AbsValcabv 20693  fldccnfld 21240  logclog 26439  𝑐ccxp 26440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-prm 16618  df-pc 16784  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-mulg 18976  df-subg 19031  df-cntz 19225  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-dvr 20286  df-subrng 20431  df-subrg 20455  df-drng 20616  df-abv 20694  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-cld 22882  df-ntr 22883  df-cls 22884  df-nei 22961  df-lp 22999  df-perf 23000  df-cn 23090  df-cnp 23091  df-haus 23178  df-tx 23425  df-hmeo 23618  df-fil 23709  df-fm 23801  df-flim 23802  df-flf 23803  df-xms 24184  df-ms 24185  df-tms 24186  df-cncf 24747  df-limc 25743  df-dv 25744  df-log 26441  df-cxp 26442
This theorem is referenced by:  ostth  27526
  Copyright terms: Public domain W3C validator