MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ostth3 Structured version   Visualization version   GIF version

Theorem ostth3 26222
Description: - Lemma for ostth 26223: p-adic case. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q 𝑄 = (ℂflds ℚ)
qabsabv.a 𝐴 = (AbsVal‘𝑄)
padic.j 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
ostth.k 𝐾 = (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, 1))
ostth.1 (𝜑𝐹𝐴)
ostth3.2 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
ostth3.3 (𝜑𝑃 ∈ ℙ)
ostth3.4 (𝜑 → (𝐹𝑃) < 1)
ostth3.5 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
ostth3.6 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
Assertion
Ref Expression
ostth3 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Distinct variable groups:   𝑛,𝑝,𝑦   𝑛,𝐾   𝑥,𝑛,𝑎,𝑝,𝑞,𝑦,𝜑   𝐽,𝑎,𝑝,𝑦   𝑆,𝑎   𝐴,𝑎,𝑛,𝑝,𝑞,𝑥,𝑦   𝑄,𝑛,𝑥,𝑦   𝐹,𝑎,𝑛,𝑝,𝑞,𝑦   𝑃,𝑎,𝑝,𝑞,𝑥,𝑦   𝑅,𝑎,𝑝,𝑞,𝑦   𝑥,𝐹
Allowed substitution hints:   𝑃(𝑛)   𝑄(𝑞,𝑝,𝑎)   𝑅(𝑥,𝑛)   𝑆(𝑥,𝑦,𝑛,𝑞,𝑝)   𝐽(𝑥,𝑛,𝑞)   𝐾(𝑥,𝑦,𝑞,𝑝,𝑎)

Proof of Theorem ostth3
Dummy variables 𝑘 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ostth3.5 . . . 4 𝑅 = -((log‘(𝐹𝑃)) / (log‘𝑃))
2 ostth.1 . . . . . . . . 9 (𝜑𝐹𝐴)
3 ostth3.3 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℙ)
4 prmuz2 16030 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
53, 4syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (ℤ‘2))
6 eluz2b2 12309 . . . . . . . . . . . 12 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
75, 6sylib 221 . . . . . . . . . . 11 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
87simpld 498 . . . . . . . . . 10 (𝜑𝑃 ∈ ℕ)
9 nnq 12349 . . . . . . . . . 10 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
108, 9syl 17 . . . . . . . . 9 (𝜑𝑃 ∈ ℚ)
11 qabsabv.a . . . . . . . . . 10 𝐴 = (AbsVal‘𝑄)
12 qrng.q . . . . . . . . . . 11 𝑄 = (ℂflds ℚ)
1312qrngbas 26203 . . . . . . . . . 10 ℚ = (Base‘𝑄)
1411, 13abvcl 19588 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ) → (𝐹𝑃) ∈ ℝ)
152, 10, 14syl2anc 587 . . . . . . . 8 (𝜑 → (𝐹𝑃) ∈ ℝ)
168nnne0d 11675 . . . . . . . . 9 (𝜑𝑃 ≠ 0)
1712qrng0 26205 . . . . . . . . . 10 0 = (0g𝑄)
1811, 13, 17abvgt0 19592 . . . . . . . . 9 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑃 ≠ 0) → 0 < (𝐹𝑃))
192, 10, 16, 18syl3anc 1368 . . . . . . . 8 (𝜑 → 0 < (𝐹𝑃))
2015, 19elrpd 12416 . . . . . . 7 (𝜑 → (𝐹𝑃) ∈ ℝ+)
2120relogcld 25214 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) ∈ ℝ)
228nnred 11640 . . . . . . 7 (𝜑𝑃 ∈ ℝ)
237simprd 499 . . . . . . 7 (𝜑 → 1 < 𝑃)
2422, 23rplogcld 25220 . . . . . 6 (𝜑 → (log‘𝑃) ∈ ℝ+)
2521, 24rerpdivcld 12450 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
2625renegcld 11056 . . . 4 (𝜑 → -((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℝ)
271, 26eqeltrid 2894 . . 3 (𝜑𝑅 ∈ ℝ)
28 ostth3.4 . . . . . . . . 9 (𝜑 → (𝐹𝑃) < 1)
29 1rp 12381 . . . . . . . . . 10 1 ∈ ℝ+
30 logltb 25191 . . . . . . . . . 10 (((𝐹𝑃) ∈ ℝ+ ∧ 1 ∈ ℝ+) → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3120, 29, 30sylancl 589 . . . . . . . . 9 (𝜑 → ((𝐹𝑃) < 1 ↔ (log‘(𝐹𝑃)) < (log‘1)))
3228, 31mpbid 235 . . . . . . . 8 (𝜑 → (log‘(𝐹𝑃)) < (log‘1))
33 log1 25177 . . . . . . . 8 (log‘1) = 0
3432, 33breqtrdi 5071 . . . . . . 7 (𝜑 → (log‘(𝐹𝑃)) < 0)
3524rpcnd 12421 . . . . . . . 8 (𝜑 → (log‘𝑃) ∈ ℂ)
3635mul01d 10828 . . . . . . 7 (𝜑 → ((log‘𝑃) · 0) = 0)
3734, 36breqtrrd 5058 . . . . . 6 (𝜑 → (log‘(𝐹𝑃)) < ((log‘𝑃) · 0))
38 0red 10633 . . . . . . 7 (𝜑 → 0 ∈ ℝ)
3921, 38, 24ltdivmuld 12470 . . . . . 6 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ (log‘(𝐹𝑃)) < ((log‘𝑃) · 0)))
4037, 39mpbird 260 . . . . 5 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) < 0)
4125lt0neg1d 11198 . . . . 5 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) < 0 ↔ 0 < -((log‘(𝐹𝑃)) / (log‘𝑃))))
4240, 41mpbid 235 . . . 4 (𝜑 → 0 < -((log‘(𝐹𝑃)) / (log‘𝑃)))
4342, 1breqtrrdi 5072 . . 3 (𝜑 → 0 < 𝑅)
4427, 43elrpd 12416 . 2 (𝜑𝑅 ∈ ℝ+)
45 padic.j . . . . 5 𝐽 = (𝑞 ∈ ℙ ↦ (𝑥 ∈ ℚ ↦ if(𝑥 = 0, 0, (𝑞↑-(𝑞 pCnt 𝑥)))))
4612, 11, 45padicabvcxp 26216 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑅 ∈ ℝ+) → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
473, 44, 46syl2anc 587 . . 3 (𝜑 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) ∈ 𝐴)
48 fveq2 6645 . . . . . . . . . 10 (𝑦 = 𝑃 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑃))
4948oveq1d 7150 . . . . . . . . 9 (𝑦 = 𝑃 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
50 eqid 2798 . . . . . . . . 9 (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
51 ovex 7168 . . . . . . . . 9 (((𝐽𝑃)‘𝑃)↑𝑐𝑅) ∈ V
5249, 50, 51fvmpt 6745 . . . . . . . 8 (𝑃 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5310, 52syl 17 . . . . . . 7 (𝜑 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = (((𝐽𝑃)‘𝑃)↑𝑐𝑅))
5445padicval 26201 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑃 ∈ ℚ) → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
553, 10, 54syl2anc 587 . . . . . . . . 9 (𝜑 → ((𝐽𝑃)‘𝑃) = if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))))
5616neneqd 2992 . . . . . . . . . 10 (𝜑 → ¬ 𝑃 = 0)
5756iffalsed 4436 . . . . . . . . 9 (𝜑 → if(𝑃 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑃))) = (𝑃↑-(𝑃 pCnt 𝑃)))
588nncnd 11641 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ ℂ)
5958exp1d 13501 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑1) = 𝑃)
6059oveq2d 7151 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = (𝑃 pCnt 𝑃))
61 1z 12000 . . . . . . . . . . . . . 14 1 ∈ ℤ
62 pcid 16199 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 1 ∈ ℤ) → (𝑃 pCnt (𝑃↑1)) = 1)
633, 61, 62sylancl 589 . . . . . . . . . . . . 13 (𝜑 → (𝑃 pCnt (𝑃↑1)) = 1)
6460, 63eqtr3d 2835 . . . . . . . . . . . 12 (𝜑 → (𝑃 pCnt 𝑃) = 1)
6564negeqd 10869 . . . . . . . . . . 11 (𝜑 → -(𝑃 pCnt 𝑃) = -1)
6665oveq2d 7151 . . . . . . . . . 10 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃↑-1))
67 neg1z 12006 . . . . . . . . . . . 12 -1 ∈ ℤ
6867a1i 11 . . . . . . . . . . 11 (𝜑 → -1 ∈ ℤ)
6958, 16, 68cxpexpzd 25302 . . . . . . . . . 10 (𝜑 → (𝑃𝑐-1) = (𝑃↑-1))
7066, 69eqtr4d 2836 . . . . . . . . 9 (𝜑 → (𝑃↑-(𝑃 pCnt 𝑃)) = (𝑃𝑐-1))
7155, 57, 703eqtrd 2837 . . . . . . . 8 (𝜑 → ((𝐽𝑃)‘𝑃) = (𝑃𝑐-1))
7271oveq1d 7150 . . . . . . 7 (𝜑 → (((𝐽𝑃)‘𝑃)↑𝑐𝑅) = ((𝑃𝑐-1)↑𝑐𝑅))
7327recnd 10658 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
7473mulm1d 11081 . . . . . . . . . 10 (𝜑 → (-1 · 𝑅) = -𝑅)
751negeqi 10868 . . . . . . . . . . 11 -𝑅 = --((log‘(𝐹𝑃)) / (log‘𝑃))
7625recnd 10658 . . . . . . . . . . . 12 (𝜑 → ((log‘(𝐹𝑃)) / (log‘𝑃)) ∈ ℂ)
7776negnegd 10977 . . . . . . . . . . 11 (𝜑 → --((log‘(𝐹𝑃)) / (log‘𝑃)) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7875, 77syl5eq 2845 . . . . . . . . . 10 (𝜑 → -𝑅 = ((log‘(𝐹𝑃)) / (log‘𝑃)))
7974, 78eqtrd 2833 . . . . . . . . 9 (𝜑 → (-1 · 𝑅) = ((log‘(𝐹𝑃)) / (log‘𝑃)))
8079oveq2d 7151 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))))
818nnrpd 12417 . . . . . . . . 9 (𝜑𝑃 ∈ ℝ+)
82 neg1rr 11740 . . . . . . . . . 10 -1 ∈ ℝ
8382a1i 11 . . . . . . . . 9 (𝜑 → -1 ∈ ℝ)
8481, 83, 73cxpmuld 25327 . . . . . . . 8 (𝜑 → (𝑃𝑐(-1 · 𝑅)) = ((𝑃𝑐-1)↑𝑐𝑅))
8558, 16, 76cxpefd 25303 . . . . . . . . 9 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))))
8621recnd 10658 . . . . . . . . . . 11 (𝜑 → (log‘(𝐹𝑃)) ∈ ℂ)
8724rpne0d 12424 . . . . . . . . . . 11 (𝜑 → (log‘𝑃) ≠ 0)
8886, 35, 87divcan1d 11406 . . . . . . . . . 10 (𝜑 → (((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃)) = (log‘(𝐹𝑃)))
8988fveq2d 6649 . . . . . . . . 9 (𝜑 → (exp‘(((log‘(𝐹𝑃)) / (log‘𝑃)) · (log‘𝑃))) = (exp‘(log‘(𝐹𝑃))))
9020reeflogd 25215 . . . . . . . . 9 (𝜑 → (exp‘(log‘(𝐹𝑃))) = (𝐹𝑃))
9185, 89, 903eqtrd 2837 . . . . . . . 8 (𝜑 → (𝑃𝑐((log‘(𝐹𝑃)) / (log‘𝑃))) = (𝐹𝑃))
9280, 84, 913eqtr3d 2841 . . . . . . 7 (𝜑 → ((𝑃𝑐-1)↑𝑐𝑅) = (𝐹𝑃))
9353, 72, 923eqtrrd 2838 . . . . . 6 (𝜑 → (𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃))
94 fveq2 6645 . . . . . . 7 (𝑃 = 𝑝 → (𝐹𝑃) = (𝐹𝑝))
95 fveq2 6645 . . . . . . 7 (𝑃 = 𝑝 → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
9694, 95eqeq12d 2814 . . . . . 6 (𝑃 = 𝑝 → ((𝐹𝑃) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑃) ↔ (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9793, 96syl5ibcom 248 . . . . 5 (𝜑 → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
9897adantr 484 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃 = 𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
99 prmnn 16008 . . . . . . . . 9 (𝑝 ∈ ℙ → 𝑝 ∈ ℕ)
10099ad2antlr 726 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℕ)
101 nnq 12349 . . . . . . . 8 (𝑝 ∈ ℕ → 𝑝 ∈ ℚ)
102100, 101syl 17 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ∈ ℚ)
103 fveq2 6645 . . . . . . . . 9 (𝑦 = 𝑝 → ((𝐽𝑃)‘𝑦) = ((𝐽𝑃)‘𝑝))
104103oveq1d 7150 . . . . . . . 8 (𝑦 = 𝑝 → (((𝐽𝑃)‘𝑦)↑𝑐𝑅) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
105 ovex 7168 . . . . . . . 8 (((𝐽𝑃)‘𝑝)↑𝑐𝑅) ∈ V
106104, 50, 105fvmpt 6745 . . . . . . 7 (𝑝 ∈ ℚ → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
107102, 106syl 17 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝) = (((𝐽𝑃)‘𝑝)↑𝑐𝑅))
10873ad2antrr 725 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑅 ∈ ℂ)
1091081cxpd 25298 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (1↑𝑐𝑅) = 1)
1103ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℙ)
11145padicval 26201 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℚ) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
112110, 102, 111syl2anc 587 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))))
113100nnne0d 11675 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑝 ≠ 0)
114113neneqd 2992 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 𝑝 = 0)
115114iffalsed 4436 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → if(𝑝 = 0, 0, (𝑃↑-(𝑃 pCnt 𝑝))) = (𝑃↑-(𝑃 pCnt 𝑝)))
116 pceq0 16197 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℕ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
1173, 99, 116syl2an 598 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ ¬ 𝑃𝑝))
118 dvdsprm 16037 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (ℤ‘2) ∧ 𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
1195, 118sylan 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝𝑃 = 𝑝))
120119necon3bbid 3024 . . . . . . . . . . . . . . 15 ((𝜑𝑝 ∈ ℙ) → (¬ 𝑃𝑝𝑃𝑝))
121117, 120bitrd 282 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℙ) → ((𝑃 pCnt 𝑝) = 0 ↔ 𝑃𝑝))
122121biimpar 481 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃 pCnt 𝑝) = 0)
123122negeqd 10869 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = -0)
124 neg0 10921 . . . . . . . . . . . 12 -0 = 0
125123, 124eqtrdi 2849 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → -(𝑃 pCnt 𝑝) = 0)
126125oveq2d 7151 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = (𝑃↑0))
12758ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝑃 ∈ ℂ)
128127exp0d 13500 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑0) = 1)
129126, 128eqtrd 2833 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝑃↑-(𝑃 pCnt 𝑝)) = 1)
130112, 115, 1293eqtrd 2837 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐽𝑃)‘𝑝) = 1)
131130oveq1d 7150 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (1↑𝑐𝑅))
132 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
133132a1i 11 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 2 ∈ ℝ)
134 ostth3.6 . . . . . . . . . . . . . 14 𝑆 = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃))
1352ad2antrr 725 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 𝐹𝐴)
13611, 13abvcl 19588 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ) → (𝐹𝑝) ∈ ℝ)
137135, 102, 136syl2anc 587 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ)
13811, 13, 17abvgt0 19592 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑝 ≠ 0) → 0 < (𝐹𝑝))
139135, 102, 113, 138syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → 0 < (𝐹𝑝))
140137, 139elrpd 12416 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) ∈ ℝ+)
141140adantrr 716 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) ∈ ℝ+)
14220ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) ∈ ℝ+)
143141, 142ifcld 4470 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) ∈ ℝ+)
144134, 143eqeltrid 2894 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ+)
145144rprecred 12430 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (1 / 𝑆) ∈ ℝ)
146 simprr 772 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑝) < 1)
14728ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝐹𝑃) < 1)
148 breq1 5033 . . . . . . . . . . . . . . . 16 ((𝐹𝑝) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑝) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
149 breq1 5033 . . . . . . . . . . . . . . . 16 ((𝐹𝑃) = if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) → ((𝐹𝑃) < 1 ↔ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1))
150148, 149ifboth 4463 . . . . . . . . . . . . . . 15 (((𝐹𝑝) < 1 ∧ (𝐹𝑃) < 1) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
151146, 147, 150syl2anc 587 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)) < 1)
152134, 151eqbrtrid 5065 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 < 1)
153144reclt1d 12432 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑆 < 1 ↔ 1 < (1 / 𝑆)))
154152, 153mpbid 235 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 1 < (1 / 𝑆))
155 expnbnd 13589 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (1 / 𝑆) ∈ ℝ ∧ 1 < (1 / 𝑆)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
156133, 145, 154, 155syl3anc 1368 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘))
157144rpcnd 12421 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℂ)
158157adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ∈ ℂ)
159144rpne0d 12424 . . . . . . . . . . . . . . . . 17 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ≠ 0)
160159adantr 484 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑆 ≠ 0)
161 nnz 11992 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
162161adantl 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℤ)
163158, 160, 162exprecd 13514 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) = (1 / (𝑆𝑘)))
1642ad3antrrr 729 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝐹𝐴)
165 ax-1ne0 10595 . . . . . . . . . . . . . . . . . 18 1 ≠ 0
16612qrng1 26206 . . . . . . . . . . . . . . . . . . 19 1 = (1r𝑄)
16711, 166, 17abv1z 19596 . . . . . . . . . . . . . . . . . 18 ((𝐹𝐴 ∧ 1 ≠ 0) → (𝐹‘1) = 1)
168164, 165, 167sylancl 589 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) = 1)
1698ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℕ)
170 nnnn0 11892 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
171 nnexpcl 13438 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑃𝑘) ∈ ℕ)
172169, 170, 171syl2an 598 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℕ)
173172nnzd 12074 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃𝑘) ∈ ℤ)
17499ad2antlr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℕ)
175 nnexpcl 13438 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (𝑝𝑘) ∈ ℕ)
176174, 170, 175syl2an 598 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℕ)
177176nnzd 12074 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑝𝑘) ∈ ℤ)
178 bezout 15881 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) ∈ ℤ ∧ (𝑝𝑘) ∈ ℤ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
179173, 177, 178syl2anc 587 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)))
180 simprl 770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃𝑝)
1813ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑃 ∈ ℙ)
182 simplr 768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑝 ∈ ℙ)
183 prmrp 16046 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃 ∈ ℙ ∧ 𝑝 ∈ ℙ) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
184181, 182, 183syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ((𝑃 gcd 𝑝) = 1 ↔ 𝑃𝑝))
185180, 184mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (𝑃 gcd 𝑝) = 1)
186185adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑃 gcd 𝑝) = 1)
187169adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑃 ∈ ℕ)
188174adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑝 ∈ ℕ)
189 simpr 488 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
190 rppwr 15898 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 ∈ ℕ ∧ 𝑝 ∈ ℕ ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
191187, 188, 189, 190syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃 gcd 𝑝) = 1 → ((𝑃𝑘) gcd (𝑝𝑘)) = 1))
192186, 191mpd 15 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
193192adantrr 716 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) gcd (𝑝𝑘)) = 1)
194193eqeq1d 2800 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ↔ 1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
1952ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝐹𝐴)
196172adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℕ)
197 nnq 12349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℚ)
198196, 197syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑃𝑘) ∈ ℚ)
199 simprrl 780 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℤ)
200 zq 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 ∈ ℤ → 𝑎 ∈ ℚ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑎 ∈ ℚ)
202 qmulcl 12354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
203198, 201, 202syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑃𝑘) · 𝑎) ∈ ℚ)
204176adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℕ)
205 nnq 12349 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑝𝑘) ∈ ℕ → (𝑝𝑘) ∈ ℚ)
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑝𝑘) ∈ ℚ)
207 simprrr 781 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℤ)
208 zq 12342 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 ∈ ℤ → 𝑏 ∈ ℚ)
209207, 208syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑏 ∈ ℚ)
210 qmulcl 12354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
211206, 209, 210syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝑝𝑘) · 𝑏) ∈ ℚ)
212 qaddcl 12352 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
213203, 211, 212syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ)
21411, 13abvcl 19588 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
215195, 213, 214syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ∈ ℝ)
21611, 13abvcl 19588 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
217195, 203, 216syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ∈ ℝ)
21811, 13abvcl 19588 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐹𝐴 ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
219195, 211, 218syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ∈ ℝ)
220217, 219readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ∈ ℝ)
221 rpexpcl 13444 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑆 ∈ ℝ+𝑘 ∈ ℤ) → (𝑆𝑘) ∈ ℝ+)
222144, 161, 221syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ+)
223222rpred 12419 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℝ)
224223adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝑆𝑘) ∈ ℝ)
225 remulcl 10611 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℝ ∧ (𝑆𝑘) ∈ ℝ) → (2 · (𝑆𝑘)) ∈ ℝ)
226132, 224, 225sylancr 590 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) ∈ ℝ)
227 qex 12348 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ℚ ∈ V
228 cnfldadd 20096 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 + = (+g‘ℂfld)
22912, 228ressplusg 16604 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ∈ V → + = (+g𝑄))
230227, 229ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 + = (+g𝑄)
23111, 13, 230abvtri 19594 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐹𝐴 ∧ ((𝑃𝑘) · 𝑎) ∈ ℚ ∧ ((𝑝𝑘) · 𝑏) ∈ ℚ) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
232195, 203, 211, 231syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))))
233 cnfldmul 20097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 · = (.r‘ℂfld)
23412, 233ressmulr 16617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (ℚ ∈ V → · = (.r𝑄))
235227, 234ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 · = (.r𝑄)
23611, 13, 235abvmul 19593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑃𝑘) ∈ ℚ ∧ 𝑎 ∈ ℚ) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
237195, 198, 201, 236syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)))
23810ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑃 ∈ ℚ)
239170ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℕ0)
24012, 11qabvexp 26210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑃 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
241195, 238, 239, 240syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑃𝑘)) = ((𝐹𝑃)↑𝑘))
242241oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑃𝑘)) · (𝐹𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
243237, 242eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) = (((𝐹𝑃)↑𝑘) · (𝐹𝑎)))
244195, 238, 14syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ)
245244, 239reexpcld 13523 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℝ)
24611, 13abvcl 19588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹𝑎) ∈ ℝ)
247195, 201, 246syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ∈ ℝ)
248245, 247remulcld 10660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ∈ ℝ)
249 elz 11971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 ∈ ℤ ↔ (𝑎 ∈ ℝ ∧ (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ)))
250249simprbi 500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑎 ∈ ℤ → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
251250adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ))
25211, 17abv0 19595 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐹𝐴 → (𝐹‘0) = 0)
2532, 252syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (𝐹‘0) = 0)
254 0le1 11152 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 0 ≤ 1
255253, 254eqbrtrdi 5069 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → (𝐹‘0) ≤ 1)
256255adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑎 ∈ ℤ) → (𝐹‘0) ≤ 1)
257 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑎 = 0 → (𝐹𝑎) = (𝐹‘0))
258257breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑎 = 0 → ((𝐹𝑎) ≤ 1 ↔ (𝐹‘0) ≤ 1))
259256, 258syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 = 0 → (𝐹𝑎) ≤ 1))
260 ostth3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
261 nnq 12349 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑛 ∈ ℕ → 𝑛 ∈ ℚ)
26211, 13abvcl 19588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝐹𝐴𝑛 ∈ ℚ) → (𝐹𝑛) ∈ ℝ)
2632, 261, 262syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℝ)
264 1re 10630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 1 ∈ ℝ
265 lenlt 10708 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝐹𝑛) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
266263, 264, 265sylancl 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑛 ∈ ℕ) → ((𝐹𝑛) ≤ 1 ↔ ¬ 1 < (𝐹𝑛)))
267266ralbidva 3161 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝜑 → (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛)))
268260, 267mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝜑 → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
269 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = 𝑎 → (𝐹𝑛) = (𝐹𝑎))
270269breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = 𝑎 → ((𝐹𝑛) ≤ 1 ↔ (𝐹𝑎) ≤ 1))
271270rspccv 3568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
272268, 271syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝜑 → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
273272adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
2742adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝐹𝐴)
275200ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → 𝑎 ∈ ℚ)
276 eqid 2798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (invg𝑄) = (invg𝑄)
27711, 13, 276abvneg 19598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐹𝐴𝑎 ∈ ℚ) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
278274, 275, 277syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) = (𝐹𝑎))
279 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑛 = ((invg𝑄)‘𝑎) → (𝐹𝑛) = (𝐹‘((invg𝑄)‘𝑎)))
280279breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑛 = ((invg𝑄)‘𝑎) → ((𝐹𝑛) ≤ 1 ↔ (𝐹‘((invg𝑄)‘𝑎)) ≤ 1))
281268adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ∀𝑛 ∈ ℕ (𝐹𝑛) ≤ 1)
28212qrngneg 26207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 ∈ ℚ → ((invg𝑄)‘𝑎) = -𝑎)
283275, 282syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) = -𝑎)
284 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → -𝑎 ∈ ℕ)
285283, 284eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → ((invg𝑄)‘𝑎) ∈ ℕ)
286280, 281, 285rspcdva 3573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹‘((invg𝑄)‘𝑎)) ≤ 1)
287278, 286eqbrtrrd 5054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑 ∧ (𝑎 ∈ ℤ ∧ -𝑎 ∈ ℕ)) → (𝐹𝑎) ≤ 1)
288287expr 460 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑎 ∈ ℤ) → (-𝑎 ∈ ℕ → (𝐹𝑎) ≤ 1))
289259, 273, 2883jaod 1425 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑎 ∈ ℤ) → ((𝑎 = 0 ∨ 𝑎 ∈ ℕ ∨ -𝑎 ∈ ℕ) → (𝐹𝑎) ≤ 1))
290251, 289mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑎 ∈ ℤ) → (𝐹𝑎) ≤ 1)
291290ralrimiva 3149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
292291ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1)
293 rsp 3170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎 ∈ ℤ (𝐹𝑎) ≤ 1 → (𝑎 ∈ ℤ → (𝐹𝑎) ≤ 1))
294292, 199, 293sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑎) ≤ 1)
295264a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 1 ∈ ℝ)
296161ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑘 ∈ ℤ)
29719ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑃))
298 expgt0 13458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑃) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑃)) → 0 < ((𝐹𝑃)↑𝑘))
299244, 296, 297, 298syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑃)↑𝑘))
300 lemul2 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑎) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑃)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑃)↑𝑘))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
301247, 295, 245, 299, 300syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑎) ≤ 1 ↔ (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1)))
302294, 301mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (((𝐹𝑃)↑𝑘) · 1))
303245recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ∈ ℂ)
304303mulid1d 10647 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · 1) = ((𝐹𝑃)↑𝑘))
305302, 304breqtrd 5056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ ((𝐹𝑃)↑𝑘))
306144rpred 12419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → 𝑆 ∈ ℝ)
307306adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑆 ∈ ℝ)
308142adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ∈ ℝ+)
309308rpge0d 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑃))
310174adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℕ)
311310, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ∈ ℚ)
312195, 311, 136syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ)
313 max1 12566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
314244, 312, 313syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
315314, 134breqtrrdi 5072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑃) ≤ 𝑆)
316 leexp1a 13535 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑃) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑃) ∧ (𝐹𝑃) ≤ 𝑆)) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
317244, 307, 239, 309, 315, 316syl32anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑃)↑𝑘) ≤ (𝑆𝑘))
318248, 245, 224, 305, 317letrd 10786 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑃)↑𝑘) · (𝐹𝑎)) ≤ (𝑆𝑘))
319243, 318eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑃𝑘) · 𝑎)) ≤ (𝑆𝑘))
32011, 13, 235abvmul 19593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐹𝐴 ∧ (𝑝𝑘) ∈ ℚ ∧ 𝑏 ∈ ℚ) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
321195, 206, 209, 320syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)))
32212, 11qabvexp 26210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑝 ∈ ℚ ∧ 𝑘 ∈ ℕ0) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
323195, 311, 239, 322syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(𝑝𝑘)) = ((𝐹𝑝)↑𝑘))
324323oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘(𝑝𝑘)) · (𝐹𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
325321, 324eqtrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) = (((𝐹𝑝)↑𝑘) · (𝐹𝑏)))
326312, 239reexpcld 13523 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℝ)
32711, 13abvcl 19588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝐴𝑏 ∈ ℚ) → (𝐹𝑏) ∈ ℝ)
328195, 209, 327syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ∈ ℝ)
329326, 328remulcld 10660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ∈ ℝ)
330 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
331330breq1d 5040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑎 = 𝑏 → ((𝐹𝑎) ≤ 1 ↔ (𝐹𝑏) ≤ 1))
332331, 292, 207rspcdva 3573 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑏) ≤ 1)
333310nnne0d 11675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 𝑝 ≠ 0)
334195, 311, 333, 138syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < (𝐹𝑝))
335 expgt0 13458 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝐹𝑝) ∈ ℝ ∧ 𝑘 ∈ ℤ ∧ 0 < (𝐹𝑝)) → 0 < ((𝐹𝑝)↑𝑘))
336312, 296, 334, 335syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 < ((𝐹𝑝)↑𝑘))
337 lemul2 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑏) ∈ ℝ ∧ 1 ∈ ℝ ∧ (((𝐹𝑝)↑𝑘) ∈ ℝ ∧ 0 < ((𝐹𝑝)↑𝑘))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
338328, 295, 326, 336, 337syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑏) ≤ 1 ↔ (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1)))
339332, 338mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (((𝐹𝑝)↑𝑘) · 1))
340326recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ∈ ℂ)
341340mulid1d 10647 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · 1) = ((𝐹𝑝)↑𝑘))
342339, 341breqtrd 5056 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ ((𝐹𝑝)↑𝑘))
343141adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ∈ ℝ+)
344343rpge0d 12423 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → 0 ≤ (𝐹𝑝))
345 max2 12568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐹𝑃) ∈ ℝ ∧ (𝐹𝑝) ∈ ℝ) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
346244, 312, 345syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ if((𝐹𝑃) ≤ (𝐹𝑝), (𝐹𝑝), (𝐹𝑃)))
347346, 134breqtrrdi 5072 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹𝑝) ≤ 𝑆)
348 leexp1a 13535 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑝) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑘 ∈ ℕ0) ∧ (0 ≤ (𝐹𝑝) ∧ (𝐹𝑝) ≤ 𝑆)) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
349312, 307, 239, 344, 347, 348syl32anc 1375 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹𝑝)↑𝑘) ≤ (𝑆𝑘))
350329, 326, 224, 342, 349letrd 10786 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝐹𝑝)↑𝑘) · (𝐹𝑏)) ≤ (𝑆𝑘))
351325, 350eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘((𝑝𝑘) · 𝑏)) ≤ (𝑆𝑘))
352217, 219, 224, 224, 319, 351le2addd 11248 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ ((𝑆𝑘) + (𝑆𝑘)))
353222rpcnd 12421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝑆𝑘) ∈ ℂ)
3543532timesd 11868 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
355354adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (2 · (𝑆𝑘)) = ((𝑆𝑘) + (𝑆𝑘)))
356352, 355breqtrrd 5058 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → ((𝐹‘((𝑃𝑘) · 𝑎)) + (𝐹‘((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
357215, 220, 226, 232, 356letrd 10786 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘)))
358 fveq2 6645 . . . . . . . . . . . . . . . . . . . . . . 23 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) = (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))))
359358breq1d 5040 . . . . . . . . . . . . . . . . . . . . . 22 (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → ((𝐹‘1) ≤ (2 · (𝑆𝑘)) ↔ (𝐹‘(((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏))) ≤ (2 · (𝑆𝑘))))
360357, 359syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (1 = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
361194, 360sylbid 243 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ (𝑘 ∈ ℕ ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ))) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
362361anassrs 471 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) ∧ (𝑎 ∈ ℤ ∧ 𝑏 ∈ ℤ)) → (((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
363362rexlimdvva 3253 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (∃𝑎 ∈ ℤ ∃𝑏 ∈ ℤ ((𝑃𝑘) gcd (𝑝𝑘)) = (((𝑃𝑘) · 𝑎) + ((𝑝𝑘) · 𝑏)) → (𝐹‘1) ≤ (2 · (𝑆𝑘))))
364179, 363mpd 15 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (𝐹‘1) ≤ (2 · (𝑆𝑘)))
365168, 364eqbrtrrd 5054 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → 1 ≤ (2 · (𝑆𝑘)))
366222rpregt0d 12425 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘)))
367 ledivmul2 11508 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℝ ∧ 2 ∈ ℝ ∧ ((𝑆𝑘) ∈ ℝ ∧ 0 < (𝑆𝑘))) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
368264, 132, 366, 367mp3an12i 1462 . . . . . . . . . . . . . . . 16 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / (𝑆𝑘)) ≤ 2 ↔ 1 ≤ (2 · (𝑆𝑘))))
369365, 368mpbird 260 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (1 / (𝑆𝑘)) ≤ 2)
370163, 369eqbrtrd 5052 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ≤ 2)
371 reexpcl 13442 . . . . . . . . . . . . . . . 16 (((1 / 𝑆) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
372145, 170, 371syl2an 598 . . . . . . . . . . . . . . 15 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ((1 / 𝑆)↑𝑘) ∈ ℝ)
373 lenlt 10708 . . . . . . . . . . . . . . 15 ((((1 / 𝑆)↑𝑘) ∈ ℝ ∧ 2 ∈ ℝ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
374372, 132, 373sylancl 589 . . . . . . . . . . . . . 14 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (((1 / 𝑆)↑𝑘) ≤ 2 ↔ ¬ 2 < ((1 / 𝑆)↑𝑘)))
375370, 374mpbid 235 . . . . . . . . . . . . 13 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → ¬ 2 < ((1 / 𝑆)↑𝑘))
376375pm2.21d 121 . . . . . . . . . . . 12 ((((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) ∧ 𝑘 ∈ ℕ) → (2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
377376rexlimdva 3243 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → (∃𝑘 ∈ ℕ 2 < ((1 / 𝑆)↑𝑘) → ¬ (𝐹𝑝) < 1))
378156, 377mpd 15 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℙ) ∧ (𝑃𝑝 ∧ (𝐹𝑝) < 1)) → ¬ (𝐹𝑝) < 1)
379378expr 460 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) < 1 → ¬ (𝐹𝑝) < 1))
380379pm2.01d 193 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ (𝐹𝑝) < 1)
381 fveq2 6645 . . . . . . . . . . 11 (𝑛 = 𝑝 → (𝐹𝑛) = (𝐹𝑝))
382381breq2d 5042 . . . . . . . . . 10 (𝑛 = 𝑝 → (1 < (𝐹𝑛) ↔ 1 < (𝐹𝑝)))
383382notbid 321 . . . . . . . . 9 (𝑛 = 𝑝 → (¬ 1 < (𝐹𝑛) ↔ ¬ 1 < (𝐹𝑝)))
384260ad2antrr 725 . . . . . . . . 9 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ∀𝑛 ∈ ℕ ¬ 1 < (𝐹𝑛))
385383, 384, 100rspcdva 3573 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ¬ 1 < (𝐹𝑝))
386 lttri3 10713 . . . . . . . . 9 (((𝐹𝑝) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
387137, 264, 386sylancl 589 . . . . . . . 8 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → ((𝐹𝑝) = 1 ↔ (¬ (𝐹𝑝) < 1 ∧ ¬ 1 < (𝐹𝑝))))
388380, 385, 387mpbir2and 712 . . . . . . 7 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = 1)
389109, 131, 3883eqtr4d 2843 . . . . . 6 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (((𝐽𝑃)‘𝑝)↑𝑐𝑅) = (𝐹𝑝))
390107, 389eqtr2d 2834 . . . . 5 (((𝜑𝑝 ∈ ℙ) ∧ 𝑃𝑝) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
391390ex 416 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑃𝑝 → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝)))
39298, 391pm2.61dne 3073 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝐹𝑝) = ((𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))‘𝑝))
39312, 11, 2, 47, 392ostthlem2 26212 . 2 (𝜑𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
394 oveq2 7143 . . . 4 (𝑎 = 𝑅 → (((𝐽𝑃)‘𝑦)↑𝑐𝑎) = (((𝐽𝑃)‘𝑦)↑𝑐𝑅))
395394mpteq2dv 5126 . . 3 (𝑎 = 𝑅 → (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)) = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅)))
396395rspceeqv 3586 . 2 ((𝑅 ∈ ℝ+𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑅))) → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
39744, 393, 396syl2anc 587 1 (𝜑 → ∃𝑎 ∈ ℝ+ 𝐹 = (𝑦 ∈ ℚ ↦ (((𝐽𝑃)‘𝑦)↑𝑐𝑎)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3o 1083   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  cq 12336  +crp 12377  cexp 13425  expce 15407  cdvds 15599   gcd cgcd 15833  cprime 16005   pCnt cpc 16163  s cress 16476  +gcplusg 16557  .rcmulr 16558  invgcminusg 18096  AbsValcabv 19580  fldccnfld 20091  logclog 25146  𝑐ccxp 25147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-drng 19497  df-subrg 19526  df-abv 19581  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148  df-cxp 25149
This theorem is referenced by:  ostth  26223
  Copyright terms: Public domain W3C validator