Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnf0xnn0 | Structured version Visualization version GIF version |
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ +∞ = +∞ | |
2 | 1 | olci 863 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
3 | elxnn0 12307 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ +∞ ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1539 ∈ wcel 2106 +∞cpnf 11006 ℕ0cn0 12233 ℕ0*cxnn0 12305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-pow 5288 ax-un 7588 ax-cnex 10927 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-pw 4535 df-sn 4562 df-uni 4840 df-pnf 11011 df-xnn0 12306 |
This theorem is referenced by: xnn0xaddcl 12969 pcxnn0cl 16561 |
Copyright terms: Public domain | W3C validator |