MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnf0xnn0 Structured version   Visualization version   GIF version

Theorem pnf0xnn0 12529
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
pnf0xnn0 +∞ ∈ ℕ0*

Proof of Theorem pnf0xnn0
StepHypRef Expression
1 eqid 2730 . . 3 +∞ = +∞
21olci 866 . 2 (+∞ ∈ ℕ0 ∨ +∞ = +∞)
3 elxnn0 12524 . 2 (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞))
42, 3mpbir 231 1 +∞ ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  +∞cpnf 11212  0cn0 12449  0*cxnn0 12522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-pow 5323  ax-un 7714  ax-cnex 11131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3922  df-ss 3934  df-pw 4568  df-sn 4593  df-uni 4875  df-pnf 11217  df-xnn0 12523
This theorem is referenced by:  xnn0xaddcl  13202  pcxnn0cl  16838
  Copyright terms: Public domain W3C validator