Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnf0xnn0 | Structured version Visualization version GIF version |
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ +∞ = +∞ | |
2 | 1 | olci 862 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
3 | elxnn0 12237 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
4 | 2, 3 | mpbir 230 | 1 ⊢ +∞ ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 843 = wceq 1539 ∈ wcel 2108 +∞cpnf 10937 ℕ0cn0 12163 ℕ0*cxnn0 12235 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-pw 4532 df-sn 4559 df-uni 4837 df-pnf 10942 df-xnn0 12236 |
This theorem is referenced by: xnn0xaddcl 12898 pcxnn0cl 16489 |
Copyright terms: Public domain | W3C validator |