Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pnf0xnn0 | Structured version Visualization version GIF version |
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ +∞ = +∞ | |
2 | 1 | olci 863 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
3 | elxnn0 12021 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
4 | 2, 3 | mpbir 234 | 1 ⊢ +∞ ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1538 ∈ wcel 2111 +∞cpnf 10723 ℕ0cn0 11947 ℕ0*cxnn0 12019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-pow 5238 ax-un 7465 ax-cnex 10644 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-pw 4499 df-sn 4526 df-uni 4802 df-pnf 10728 df-xnn0 12020 |
This theorem is referenced by: xnn0xaddcl 12682 |
Copyright terms: Public domain | W3C validator |