|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pnf0xnn0 | Structured version Visualization version GIF version | ||
| Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| pnf0xnn0 | ⊢ +∞ ∈ ℕ0* | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid 2737 | . . 3 ⊢ +∞ = +∞ | |
| 2 | 1 | olci 867 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) | 
| 3 | elxnn0 12601 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
| 4 | 2, 3 | mpbir 231 | 1 ⊢ +∞ ∈ ℕ0* | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∨ wo 848 = wceq 1540 ∈ wcel 2108 +∞cpnf 11292 ℕ0cn0 12526 ℕ0*cxnn0 12599 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-pow 5365 ax-un 7755 ax-cnex 11211 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 df-ss 3968 df-pw 4602 df-sn 4627 df-uni 4908 df-pnf 11297 df-xnn0 12600 | 
| This theorem is referenced by: xnn0xaddcl 13277 pcxnn0cl 16898 | 
| Copyright terms: Public domain | W3C validator |