MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnf0xnn0 Structured version   Visualization version   GIF version

Theorem pnf0xnn0 12461
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
pnf0xnn0 +∞ ∈ ℕ0*

Proof of Theorem pnf0xnn0
StepHypRef Expression
1 eqid 2731 . . 3 +∞ = +∞
21olci 866 . 2 (+∞ ∈ ℕ0 ∨ +∞ = +∞)
3 elxnn0 12456 . 2 (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞))
42, 3mpbir 231 1 +∞ ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1541  wcel 2111  +∞cpnf 11143  0cn0 12381  0*cxnn0 12454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-pow 5301  ax-un 7668  ax-cnex 11062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-pw 4549  df-sn 4574  df-uni 4857  df-pnf 11148  df-xnn0 12455
This theorem is referenced by:  xnn0xaddcl  13134  pcxnn0cl  16772
  Copyright terms: Public domain W3C validator