MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pnf0xnn0 Structured version   Visualization version   GIF version

Theorem pnf0xnn0 12603
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
pnf0xnn0 +∞ ∈ ℕ0*

Proof of Theorem pnf0xnn0
StepHypRef Expression
1 eqid 2726 . . 3 +∞ = +∞
21olci 864 . 2 (+∞ ∈ ℕ0 ∨ +∞ = +∞)
3 elxnn0 12598 . 2 (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞))
42, 3mpbir 230 1 +∞ ∈ ℕ0*
Colors of variables: wff setvar class
Syntax hints:  wo 845   = wceq 1534  wcel 2099  +∞cpnf 11295  0cn0 12524  0*cxnn0 12596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-pow 5369  ax-un 7746  ax-cnex 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-v 3464  df-un 3952  df-ss 3964  df-pw 4609  df-sn 4634  df-uni 4914  df-pnf 11300  df-xnn0 12597
This theorem is referenced by:  xnn0xaddcl  13268  pcxnn0cl  16862
  Copyright terms: Public domain W3C validator