![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pnf0xnn0 | Structured version Visualization version GIF version |
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ +∞ = +∞ | |
2 | 1 | olci 865 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
3 | elxnn0 12627 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
4 | 2, 3 | mpbir 231 | 1 ⊢ +∞ ∈ ℕ0* |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 846 = wceq 1537 ∈ wcel 2108 +∞cpnf 11321 ℕ0cn0 12553 ℕ0*cxnn0 12625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pow 5383 ax-un 7770 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-uni 4932 df-pnf 11326 df-xnn0 12626 |
This theorem is referenced by: xnn0xaddcl 13297 pcxnn0cl 16907 |
Copyright terms: Public domain | W3C validator |