MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq1 Structured version   Visualization version   GIF version

Theorem predeq1 6279
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq1 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))

Proof of Theorem predeq1
StepHypRef Expression
1 eqid 2730 . 2 𝐴 = 𝐴
2 eqid 2730 . 2 𝑋 = 𝑋
3 predeq123 6278 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
41, 2, 3mp3an23 1455 1 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Predcpred 6276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator