MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq1 Structured version   Visualization version   GIF version

Theorem predeq1 6204
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq1 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))

Proof of Theorem predeq1
StepHypRef Expression
1 eqid 2738 . 2 𝐴 = 𝐴
2 eqid 2738 . 2 𝑋 = 𝑋
3 predeq123 6203 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
41, 2, 3mp3an23 1452 1 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐴, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  wrecseq123OLD  8131
  Copyright terms: Public domain W3C validator