MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq123OLD Structured version   Visualization version   GIF version

Theorem wrecseq123OLD 8102
Description: Obsolete proof of wrecseq123 8101 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq123OLD ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))

Proof of Theorem wrecseq123OLD
Dummy variables 𝑓 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3943 . . . . . . . 8 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
213ad2ant2 1132 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑥𝐴𝑥𝐵))
3 predeq1 6193 . . . . . . . . . . 11 (𝑅 = 𝑆 → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐴, 𝑦))
4 predeq2 6194 . . . . . . . . . . 11 (𝐴 = 𝐵 → Pred(𝑆, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
53, 4sylan9eq 2799 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
653adant3 1130 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → Pred(𝑅, 𝐴, 𝑦) = Pred(𝑆, 𝐵, 𝑦))
76sseq1d 3948 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
87ralbidv 3120 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ↔ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥))
92, 8anbi12d 630 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ↔ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥)))
10 simp3 1136 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → 𝐹 = 𝐺)
115reseq2d 5880 . . . . . . . . . 10 ((𝑅 = 𝑆𝐴 = 𝐵) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))
12113adant3 1130 . . . . . . . . 9 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)) = (𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))
1310, 12fveq12d 6763 . . . . . . . 8 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))
1413eqeq2d 2749 . . . . . . 7 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
1514ralbidv 3120 . . . . . 6 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))) ↔ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦)))))
169, 153anbi23d 1437 . . . . 5 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → ((𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1716exbidv 1925 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → (∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))) ↔ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))))
1817abbidv 2808 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
1918unieqd 4850 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))})
20 dfwrecsOLD 8100 . 2 wrecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
21 dfwrecsOLD 8100 . 2 wrecs(𝑆, 𝐵, 𝐺) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐵 ∧ ∀𝑦𝑥 Pred(𝑆, 𝐵, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝐺‘(𝑓 ↾ Pred(𝑆, 𝐵, 𝑦))))}
2219, 20, 213eqtr4g 2804 1 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wex 1783  {cab 2715  wral 3063  wss 3883   cuni 4836  cres 5582  Predcpred 6190   Fn wfn 6413  cfv 6418  wrecscwrecs 8098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator