MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq2 Structured version   Visualization version   GIF version

Theorem predeq2 6257
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq2 (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem predeq2
StepHypRef Expression
1 eqid 2733 . 2 𝑅 = 𝑅
2 eqid 2733 . 2 𝑋 = 𝑋
3 predeq123 6255 . 2 ((𝑅 = 𝑅𝐴 = 𝐵𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
41, 2, 3mp3an13 1453 1 (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  Predcpred 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-cnv 5642  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254
This theorem is referenced by:  fprlem1  8232  wrecseq123OLD  8247  wfrlem5OLD  8260  frmin  9690  frrlem15  9698  prednn  13570  prednn0  13571
  Copyright terms: Public domain W3C validator