![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq2 | ⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2737 | . 2 ⊢ 𝑋 = 𝑋 | |
3 | predeq123 6330 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | |
4 | 1, 2, 3 | mp3an13 1453 | 1 ⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Predcpred 6328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-cnv 5701 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 |
This theorem is referenced by: fprlem1 8333 wrecseq123OLD 8348 wfrlem5OLD 8361 frmin 9796 frrlem15 9804 prednn 13697 prednn0 13698 |
Copyright terms: Public domain | W3C validator |