MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq2 Structured version   Visualization version   GIF version

Theorem predeq2 6332
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
predeq2 (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))

Proof of Theorem predeq2
StepHypRef Expression
1 eqid 2737 . 2 𝑅 = 𝑅
2 eqid 2737 . 2 𝑋 = 𝑋
3 predeq123 6330 . 2 ((𝑅 = 𝑅𝐴 = 𝐵𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
41, 2, 3mp3an13 1453 1 (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Predcpred 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329
This theorem is referenced by:  fprlem1  8333  wrecseq123OLD  8348  wfrlem5OLD  8361  frmin  9796  frrlem15  9804  prednn  13697  prednn0  13698
  Copyright terms: Public domain W3C validator