![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 2-Feb-2011.) |
Ref | Expression |
---|---|
predeq2 | ⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2733 | . 2 ⊢ 𝑋 = 𝑋 | |
3 | predeq123 6255 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑋) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) | |
4 | 1, 2, 3 | mp3an13 1453 | 1 ⊢ (𝐴 = 𝐵 → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑅, 𝐵, 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 Predcpred 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-xp 5640 df-cnv 5642 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 |
This theorem is referenced by: fprlem1 8232 wrecseq123OLD 8247 wfrlem5OLD 8260 frmin 9690 frrlem15 9698 prednn 13570 prednn0 13571 |
Copyright terms: Public domain | W3C validator |