MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq123 Structured version   Visualization version   GIF version

Theorem predeq123 6275
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
predeq123 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))

Proof of Theorem predeq123
StepHypRef Expression
1 simp2 1137 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝐴 = 𝐵)
2 cnveq 5837 . . . . 5 (𝑅 = 𝑆𝑅 = 𝑆)
323ad2ant1 1133 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
4 sneq 4599 . . . . 5 (𝑋 = 𝑌 → {𝑋} = {𝑌})
543ad2ant3 1135 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → {𝑋} = {𝑌})
63, 5imaeq12d 6032 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → (𝑅 “ {𝑋}) = (𝑆 “ {𝑌}))
71, 6ineq12d 4184 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐵 ∩ (𝑆 “ {𝑌})))
8 df-pred 6274 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
9 df-pred 6274 . 2 Pred(𝑆, 𝐵, 𝑌) = (𝐵 ∩ (𝑆 “ {𝑌}))
107, 8, 93eqtr4g 2789 1 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  cin 3913  {csn 4589  ccnv 5637  cima 5641  Predcpred 6273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274
This theorem is referenced by:  predeq1  6276  predeq2  6277  predeq3  6278  frecseq123  8261  wsuceq123  35802  wlimeq12  35807
  Copyright terms: Public domain W3C validator