Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > predeq123 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
predeq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
2 | cnveq 5718 | . . . . 5 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
3 | 2 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
4 | sneq 4535 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
5 | 4 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → {𝑋} = {𝑌}) |
6 | 3, 5 | imaeq12d 5906 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (◡𝑅 “ {𝑋}) = (◡𝑆 “ {𝑌})) |
7 | 1, 6 | ineq12d 4120 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐵 ∩ (◡𝑆 “ {𝑌}))) |
8 | df-pred 6130 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
9 | df-pred 6130 | . 2 ⊢ Pred(𝑆, 𝐵, 𝑌) = (𝐵 ∩ (◡𝑆 “ {𝑌})) | |
10 | 7, 8, 9 | 3eqtr4g 2818 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1538 ∩ cin 3859 {csn 4525 ◡ccnv 5526 “ cima 5530 Predcpred 6129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-rab 3079 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-br 5036 df-opab 5098 df-xp 5533 df-cnv 5535 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 |
This theorem is referenced by: predeq1 6132 predeq2 6133 predeq3 6134 wsuceq123 33367 wlimeq12 33372 frecseq123 33385 |
Copyright terms: Public domain | W3C validator |