MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  predeq123 Structured version   Visualization version   GIF version

Theorem predeq123 6203
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.)
Assertion
Ref Expression
predeq123 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))

Proof of Theorem predeq123
StepHypRef Expression
1 simp2 1136 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝐴 = 𝐵)
2 cnveq 5782 . . . . 5 (𝑅 = 𝑆𝑅 = 𝑆)
323ad2ant1 1132 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → 𝑅 = 𝑆)
4 sneq 4571 . . . . 5 (𝑋 = 𝑌 → {𝑋} = {𝑌})
543ad2ant3 1134 . . . 4 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → {𝑋} = {𝑌})
63, 5imaeq12d 5970 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → (𝑅 “ {𝑋}) = (𝑆 “ {𝑌}))
71, 6ineq12d 4147 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → (𝐴 ∩ (𝑅 “ {𝑋})) = (𝐵 ∩ (𝑆 “ {𝑌})))
8 df-pred 6202 . 2 Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
9 df-pred 6202 . 2 Pred(𝑆, 𝐵, 𝑌) = (𝐵 ∩ (𝑆 “ {𝑌}))
107, 8, 93eqtr4g 2803 1 ((𝑅 = 𝑆𝐴 = 𝐵𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  cin 3886  {csn 4561  ccnv 5588  cima 5592  Predcpred 6201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202
This theorem is referenced by:  predeq1  6204  predeq2  6205  predeq3  6206  frecseq123  8098  wsuceq123  33808  wlimeq12  33813
  Copyright terms: Public domain W3C validator