![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq123 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
predeq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
2 | cnveq 5898 | . . . . 5 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
3 | 2 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
4 | sneq 4658 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
5 | 4 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → {𝑋} = {𝑌}) |
6 | 3, 5 | imaeq12d 6090 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (◡𝑅 “ {𝑋}) = (◡𝑆 “ {𝑌})) |
7 | 1, 6 | ineq12d 4242 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐵 ∩ (◡𝑆 “ {𝑌}))) |
8 | df-pred 6332 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
9 | df-pred 6332 | . 2 ⊢ Pred(𝑆, 𝐵, 𝑌) = (𝐵 ∩ (◡𝑆 “ {𝑌})) | |
10 | 7, 8, 9 | 3eqtr4g 2805 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∩ cin 3975 {csn 4648 ◡ccnv 5699 “ cima 5703 Predcpred 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 |
This theorem is referenced by: predeq1 6334 predeq2 6335 predeq3 6336 frecseq123 8323 wsuceq123 35778 wlimeq12 35783 |
Copyright terms: Public domain | W3C validator |