![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq123 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
predeq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
2 | cnveq 5870 | . . . . 5 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
3 | 2 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
4 | sneq 4634 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
5 | 4 | 3ad2ant3 1132 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → {𝑋} = {𝑌}) |
6 | 3, 5 | imaeq12d 6059 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (◡𝑅 “ {𝑋}) = (◡𝑆 “ {𝑌})) |
7 | 1, 6 | ineq12d 4207 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐵 ∩ (◡𝑆 “ {𝑌}))) |
8 | df-pred 6300 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
9 | df-pred 6300 | . 2 ⊢ Pred(𝑆, 𝐵, 𝑌) = (𝐵 ∩ (◡𝑆 “ {𝑌})) | |
10 | 7, 8, 9 | 3eqtr4g 2790 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∩ cin 3938 {csn 4624 ◡ccnv 5671 “ cima 5675 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 |
This theorem is referenced by: predeq1 6302 predeq2 6303 predeq3 6304 frecseq123 8286 wsuceq123 35467 wlimeq12 35472 |
Copyright terms: Public domain | W3C validator |