![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > predeq123 | Structured version Visualization version GIF version |
Description: Equality theorem for the predecessor class. (Contributed by Scott Fenton, 13-Jun-2018.) |
Ref | Expression |
---|---|
predeq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1117 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → 𝐴 = 𝐵) | |
2 | cnveq 5595 | . . . . 5 ⊢ (𝑅 = 𝑆 → ◡𝑅 = ◡𝑆) | |
3 | 2 | 3ad2ant1 1113 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → ◡𝑅 = ◡𝑆) |
4 | sneq 4452 | . . . . 5 ⊢ (𝑋 = 𝑌 → {𝑋} = {𝑌}) | |
5 | 4 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → {𝑋} = {𝑌}) |
6 | 3, 5 | imaeq12d 5773 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (◡𝑅 “ {𝑋}) = (◡𝑆 “ {𝑌})) |
7 | 1, 6 | ineq12d 4079 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → (𝐴 ∩ (◡𝑅 “ {𝑋})) = (𝐵 ∩ (◡𝑆 “ {𝑌}))) |
8 | df-pred 5988 | . 2 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
9 | df-pred 5988 | . 2 ⊢ Pred(𝑆, 𝐵, 𝑌) = (𝐵 ∩ (◡𝑆 “ {𝑌})) | |
10 | 7, 8, 9 | 3eqtr4g 2839 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝑋 = 𝑌) → Pred(𝑅, 𝐴, 𝑋) = Pred(𝑆, 𝐵, 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∩ cin 3830 {csn 4442 ◡ccnv 5407 “ cima 5411 Predcpred 5987 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rab 3097 df-v 3417 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4181 df-if 4352 df-sn 4443 df-pr 4445 df-op 4449 df-br 4931 df-opab 4993 df-xp 5414 df-cnv 5416 df-dm 5418 df-rn 5419 df-res 5420 df-ima 5421 df-pred 5988 |
This theorem is referenced by: predeq1 5990 predeq2 5991 predeq3 5992 wsuceq123 32622 wlimeq12 32627 frecseq123 32640 |
Copyright terms: Public domain | W3C validator |