![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashle2prv | Structured version Visualization version GIF version |
Description: A nonempty subset of a powerset of a class 𝑉 has size less than or equal to two iff it is an unordered pair of elements of 𝑉. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
hashle2prv | ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4785 | . . 3 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ 𝑃 ≠ ∅)) | |
2 | hashle2pr 14444 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
4 | eldifi 4121 | . . . . 5 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑃 ∈ 𝒫 𝑉) | |
5 | eleq1 2815 | . . . . . 6 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
6 | prelpw 5439 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
7 | 6 | biimprd 247 | . . . . . . 7 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
8 | 7 | el2v 3476 | . . . . . 6 ⊢ ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
9 | 5, 8 | biimtrdi 252 | . . . . 5 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
10 | 4, 9 | syl5com 31 | . . . 4 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
11 | 10 | pm4.71rd 562 | . . 3 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}))) |
12 | 11 | 2exbidv 1919 | . 2 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}))) |
13 | r2ex 3189 | . . . 4 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏})) | |
14 | 13 | bicomi 223 | . . 3 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏}) |
15 | 14 | a1i 11 | . 2 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏})) |
16 | 3, 12, 15 | 3bitrd 305 | 1 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2934 ∃wrex 3064 Vcvv 3468 ∖ cdif 3940 ∅c0 4317 𝒫 cpw 4597 {csn 4623 {cpr 4625 class class class wbr 5141 ‘cfv 6537 ≤ cle 11253 2c2 12271 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: upgredg 28905 sprvalpwle2 46734 |
Copyright terms: Public domain | W3C validator |