MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashle2prv Structured version   Visualization version   GIF version

Theorem hashle2prv 14445
Description: A nonempty subset of a powerset of a class 𝑉 has size less than or equal to two iff it is an unordered pair of elements of 𝑉. (Contributed by AV, 24-Nov-2021.)
Assertion
Ref Expression
hashle2prv (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏}))
Distinct variable groups:   𝑃,𝑎,𝑏   𝑉,𝑎,𝑏

Proof of Theorem hashle2prv
StepHypRef Expression
1 eldifsn 4785 . . 3 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑃 ∈ 𝒫 𝑉𝑃 ≠ ∅))
2 hashle2pr 14444 . . 3 ((𝑃 ∈ 𝒫 𝑉𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
31, 2sylbi 216 . 2 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑏 𝑃 = {𝑎, 𝑏}))
4 eldifi 4121 . . . . 5 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑃 ∈ 𝒫 𝑉)
5 eleq1 2815 . . . . . 6 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
6 prelpw 5439 . . . . . . . 8 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
76biimprd 247 . . . . . . 7 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
87el2v 3476 . . . . . 6 ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉))
95, 8biimtrdi 252 . . . . 5 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
104, 9syl5com 31 . . . 4 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉)))
1110pm4.71rd 562 . . 3 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} ↔ ((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏})))
12112exbidv 1919 . 2 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎𝑏 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏})))
13 r2ex 3189 . . . 4 (∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏}))
1413bicomi 223 . . 3 (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏})
1514a1i 11 . 2 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏}))
163, 12, 153bitrd 305 1 (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎𝑉𝑏𝑉 𝑃 = {𝑎, 𝑏}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wex 1773  wcel 2098  wne 2934  wrex 3064  Vcvv 3468  cdif 3940  c0 4317  𝒫 cpw 4597  {csn 4623  {cpr 4625   class class class wbr 5141  cfv 6537  cle 11253  2c2 12271  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296
This theorem is referenced by:  upgredg  28905  sprvalpwle2  46734
  Copyright terms: Public domain W3C validator