Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashle2prv | Structured version Visualization version GIF version |
Description: A nonempty subset of a powerset of a class 𝑉 has size less than or equal to two iff it is an unordered pair of elements of 𝑉. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
hashle2prv | ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4726 | . . 3 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ 𝑃 ≠ ∅)) | |
2 | hashle2pr 14236 | . . 3 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ 𝑃 ≠ ∅) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
3 | 1, 2 | sylbi 216 | . 2 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
4 | eldifi 4067 | . . . . 5 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → 𝑃 ∈ 𝒫 𝑉) | |
5 | eleq1 2824 | . . . . . 6 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
6 | prelpw 5375 | . . . . . . . 8 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
7 | 6 | biimprd 248 | . . . . . . 7 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
8 | 7 | el2v 3445 | . . . . . 6 ⊢ ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
9 | 5, 8 | syl6bi 253 | . . . . 5 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
10 | 4, 9 | syl5com 31 | . . . 4 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
11 | 10 | pm4.71rd 564 | . . 3 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (𝑃 = {𝑎, 𝑏} ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}))) |
12 | 11 | 2exbidv 1925 | . 2 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}))) |
13 | r2ex 3189 | . . . 4 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏} ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏})) | |
14 | 13 | bicomi 223 | . . 3 ⊢ (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏}) |
15 | 14 | a1i 11 | . 2 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → (∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏})) |
16 | 3, 12, 15 | 3bitrd 305 | 1 ⊢ (𝑃 ∈ (𝒫 𝑉 ∖ {∅}) → ((♯‘𝑃) ≤ 2 ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑃 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ≠ wne 2941 ∃wrex 3071 Vcvv 3437 ∖ cdif 3889 ∅c0 4262 𝒫 cpw 4539 {csn 4565 {cpr 4567 class class class wbr 5081 ‘cfv 6458 ≤ cle 11056 2c2 12074 ♯chash 14090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-2o 8329 df-oadd 8332 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-dju 9703 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-xnn0 12352 df-z 12366 df-uz 12629 df-fz 13286 df-hash 14091 |
This theorem is referenced by: upgredg 27552 sprvalpwle2 44999 |
Copyright terms: Public domain | W3C validator |