MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrpredgv Structured version   Visualization version   GIF version

Theorem umgrpredgv 28390
Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv 28357. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4769 or prprc2 4770, i.e. a loop), but 𝑀𝑉 or 𝑁𝑉 would not be true. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrpredgv ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem umgrpredgv
StepHypRef Expression
1 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
21eleq2i 2826 . . 3 ({𝑀, 𝑁} ∈ 𝐸 ↔ {𝑀, 𝑁} ∈ (Edg‘𝐺))
3 edgumgr 28385 . . 3 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ (Edg‘𝐺)) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2))
42, 3sylan2b 595 . 2 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2))
5 eqid 2733 . . . . 5 {𝑀, 𝑁} = {𝑀, 𝑁}
65hashprdifel 14355 . . . 4 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
7 upgredg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
87eqcomi 2742 . . . . . . . 8 (Vtx‘𝐺) = 𝑉
98pweqi 4618 . . . . . . 7 𝒫 (Vtx‘𝐺) = 𝒫 𝑉
109eleq2i 2826 . . . . . 6 ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)
11 prelpw 5446 . . . . . . 7 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉))
1211biimprd 247 . . . . . 6 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 𝑉 → (𝑀𝑉𝑁𝑉)))
1310, 12biimtrid 241 . . . . 5 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
14133adant3 1133 . . . 4 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
156, 14syl 17 . . 3 ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
1615impcom 409 . 2 (({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀𝑉𝑁𝑉))
174, 16syl 17 1 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  𝒫 cpw 4602  {cpr 4630  cfv 6541  2c2 12264  chash 14287  Vtxcvtx 28246  Edgcedg 28297  UMGraphcumgr 28331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-oadd 8467  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-n0 12470  df-z 12556  df-uz 12820  df-fz 13482  df-hash 14288  df-edg 28298  df-umgr 28333
This theorem is referenced by:  umgrnloop2  28396  usgrpredgv  28444  umgr2edg  28456  umgrvad2edg  28460  nbumgr  28594  umgr2adedgwlklem  29188  umgr2adedgspth  29192  frgrncvvdeqlem2  29543  fusgr2wsp2nb  29577
  Copyright terms: Public domain W3C validator