MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrpredgv Structured version   Visualization version   GIF version

Theorem umgrpredgv 27510
Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv 27477. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4701 or prprc2 4702, i.e. a loop), but 𝑀𝑉 or 𝑁𝑉 would not be true. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrpredgv ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem umgrpredgv
StepHypRef Expression
1 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
21eleq2i 2830 . . 3 ({𝑀, 𝑁} ∈ 𝐸 ↔ {𝑀, 𝑁} ∈ (Edg‘𝐺))
3 edgumgr 27505 . . 3 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ (Edg‘𝐺)) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2))
42, 3sylan2b 594 . 2 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2))
5 eqid 2738 . . . . 5 {𝑀, 𝑁} = {𝑀, 𝑁}
65hashprdifel 14113 . . . 4 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
7 upgredg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
87eqcomi 2747 . . . . . . . 8 (Vtx‘𝐺) = 𝑉
98pweqi 4551 . . . . . . 7 𝒫 (Vtx‘𝐺) = 𝒫 𝑉
109eleq2i 2830 . . . . . 6 ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)
11 prelpw 5362 . . . . . . 7 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉))
1211biimprd 247 . . . . . 6 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 𝑉 → (𝑀𝑉𝑁𝑉)))
1310, 12syl5bi 241 . . . . 5 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
14133adant3 1131 . . . 4 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
156, 14syl 17 . . 3 ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
1615impcom 408 . 2 (({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀𝑉𝑁𝑉))
174, 16syl 17 1 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  𝒫 cpw 4533  {cpr 4563  cfv 6433  2c2 12028  chash 14044  Vtxcvtx 27366  Edgcedg 27417  UMGraphcumgr 27451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-umgr 27453
This theorem is referenced by:  umgrnloop2  27516  usgrpredgv  27564  umgr2edg  27576  umgrvad2edg  27580  nbumgr  27714  umgr2adedgwlklem  28309  umgr2adedgspth  28313  frgrncvvdeqlem2  28664  fusgr2wsp2nb  28698
  Copyright terms: Public domain W3C validator