| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > umgrpredgv | Structured version Visualization version GIF version | ||
| Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv 29086. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4741 or prprc2 4742, i.e. a loop), but 𝑀 ∈ 𝑉 or 𝑁 ∈ 𝑉 would not be true. (Contributed by AV, 27-Nov-2020.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrpredgv | ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 2 | 1 | eleq2i 2826 | . . 3 ⊢ ({𝑀, 𝑁} ∈ 𝐸 ↔ {𝑀, 𝑁} ∈ (Edg‘𝐺)) |
| 3 | edgumgr 29114 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ (Edg‘𝐺)) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2)) | |
| 4 | 2, 3 | sylan2b 594 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2)) |
| 5 | eqid 2735 | . . . . 5 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
| 6 | 5 | hashprdifel 14416 | . . . 4 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
| 7 | upgredg.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 8 | 7 | eqcomi 2744 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = 𝑉 |
| 9 | 8 | pweqi 4591 | . . . . . . 7 ⊢ 𝒫 (Vtx‘𝐺) = 𝒫 𝑉 |
| 10 | 9 | eleq2i 2826 | . . . . . 6 ⊢ ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉) |
| 11 | prelpw 5421 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)) | |
| 12 | 11 | biimprd 248 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 13 | 10, 12 | biimtrid 242 | . . . . 5 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 14 | 13 | 3adant3 1132 | . . . 4 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 15 | 6, 14 | syl 17 | . . 3 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 16 | 15 | impcom 407 | . 2 ⊢ (({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| 17 | 4, 16 | syl 17 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 𝒫 cpw 4575 {cpr 4603 ‘cfv 6531 2c2 12295 ♯chash 14348 Vtxcvtx 28975 Edgcedg 29026 UMGraphcumgr 29060 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-edg 29027 df-umgr 29062 |
| This theorem is referenced by: umgrnloop2 29125 usgrpredgv 29176 umgr2edg 29188 umgrvad2edg 29192 nbumgr 29326 umgr2adedgwlklem 29926 umgr2adedgspth 29930 frgrncvvdeqlem2 30281 fusgr2wsp2nb 30315 |
| Copyright terms: Public domain | W3C validator |