MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrpredgv Structured version   Visualization version   GIF version

Theorem umgrpredgv 29139
Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv 29106. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4719 or prprc2 4720, i.e. a loop), but 𝑀𝑉 or 𝑁𝑉 would not be true. (Contributed by AV, 27-Nov-2020.)
Hypotheses
Ref Expression
upgredg.v 𝑉 = (Vtx‘𝐺)
upgredg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgrpredgv ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))

Proof of Theorem umgrpredgv
StepHypRef Expression
1 upgredg.e . . . 4 𝐸 = (Edg‘𝐺)
21eleq2i 2825 . . 3 ({𝑀, 𝑁} ∈ 𝐸 ↔ {𝑀, 𝑁} ∈ (Edg‘𝐺))
3 edgumgr 29134 . . 3 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ (Edg‘𝐺)) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2))
42, 3sylan2b 594 . 2 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2))
5 eqid 2733 . . . . 5 {𝑀, 𝑁} = {𝑀, 𝑁}
65hashprdifel 14312 . . . 4 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁))
7 upgredg.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
87eqcomi 2742 . . . . . . . 8 (Vtx‘𝐺) = 𝑉
98pweqi 4567 . . . . . . 7 𝒫 (Vtx‘𝐺) = 𝒫 𝑉
109eleq2i 2825 . . . . . 6 ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)
11 prelpw 5391 . . . . . . 7 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀𝑉𝑁𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉))
1211biimprd 248 . . . . . 6 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 𝑉 → (𝑀𝑉𝑁𝑉)))
1310, 12biimtrid 242 . . . . 5 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
14133adant3 1132 . . . 4 ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀𝑁) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
156, 14syl 17 . . 3 ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀𝑉𝑁𝑉)))
1615impcom 407 . 2 (({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀𝑉𝑁𝑉))
174, 16syl 17 1 ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀𝑉𝑁𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  𝒫 cpw 4551  {cpr 4579  cfv 6489  2c2 12191  chash 14244  Vtxcvtx 28995  Edgcedg 29046  UMGraphcumgr 29080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9805  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-n0 12393  df-z 12480  df-uz 12743  df-fz 13415  df-hash 14245  df-edg 29047  df-umgr 29082
This theorem is referenced by:  umgrnloop2  29145  usgrpredgv  29196  umgr2edg  29208  umgrvad2edg  29212  nbumgr  29346  umgr2adedgwlklem  29943  umgr2adedgspth  29947  frgrncvvdeqlem2  30301  fusgr2wsp2nb  30335  pgnbgreunbgr  48287
  Copyright terms: Public domain W3C validator