Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > umgrpredgv | Structured version Visualization version GIF version |
Description: An edge of a multigraph always connects two vertices. Analogue of umgredgprv 27014. This theorem does not hold for arbitrary pseudographs: if either 𝑀 or 𝑁 is a proper class, then {𝑀, 𝑁} ∈ 𝐸 could still hold ({𝑀, 𝑁} would be either {𝑀} or {𝑁}, see prprc1 4662 or prprc2 4663, i.e. a loop), but 𝑀 ∈ 𝑉 or 𝑁 ∈ 𝑉 would not be true. (Contributed by AV, 27-Nov-2020.) |
Ref | Expression |
---|---|
upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
umgrpredgv | ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
2 | 1 | eleq2i 2844 | . . 3 ⊢ ({𝑀, 𝑁} ∈ 𝐸 ↔ {𝑀, 𝑁} ∈ (Edg‘𝐺)) |
3 | edgumgr 27042 | . . 3 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ (Edg‘𝐺)) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2)) | |
4 | 2, 3 | sylan2b 596 | . 2 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2)) |
5 | eqid 2759 | . . . . 5 ⊢ {𝑀, 𝑁} = {𝑀, 𝑁} | |
6 | 5 | hashprdifel 13823 | . . . 4 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁)) |
7 | upgredg.v | . . . . . . . . 9 ⊢ 𝑉 = (Vtx‘𝐺) | |
8 | 7 | eqcomi 2768 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = 𝑉 |
9 | 8 | pweqi 4516 | . . . . . . 7 ⊢ 𝒫 (Vtx‘𝐺) = 𝒫 𝑉 |
10 | 9 | eleq2i 2844 | . . . . . 6 ⊢ ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉) |
11 | prelpw 5312 | . . . . . . 7 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ((𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) ↔ {𝑀, 𝑁} ∈ 𝒫 𝑉)) | |
12 | 11 | biimprd 251 | . . . . . 6 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 𝑉 → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
13 | 10, 12 | syl5bi 245 | . . . . 5 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁}) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
14 | 13 | 3adant3 1130 | . . . 4 ⊢ ((𝑀 ∈ {𝑀, 𝑁} ∧ 𝑁 ∈ {𝑀, 𝑁} ∧ 𝑀 ≠ 𝑁) → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
15 | 6, 14 | syl 17 | . . 3 ⊢ ((♯‘{𝑀, 𝑁}) = 2 → ({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
16 | 15 | impcom 411 | . 2 ⊢ (({𝑀, 𝑁} ∈ 𝒫 (Vtx‘𝐺) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
17 | 4, 16 | syl 17 | 1 ⊢ ((𝐺 ∈ UMGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 𝒫 cpw 4498 {cpr 4528 ‘cfv 6341 2c2 11743 ♯chash 13754 Vtxcvtx 26903 Edgcedg 26954 UMGraphcumgr 26988 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-oadd 8123 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-dju 9377 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-nn 11689 df-2 11751 df-n0 11949 df-z 12035 df-uz 12297 df-fz 12954 df-hash 13755 df-edg 26955 df-umgr 26990 |
This theorem is referenced by: umgrnloop2 27053 usgrpredgv 27101 umgr2edg 27113 umgrvad2edg 27117 nbumgr 27251 umgr2adedgwlklem 27844 umgr2adedgspth 27848 frgrncvvdeqlem2 28199 fusgr2wsp2nb 28233 |
Copyright terms: Public domain | W3C validator |