Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > prprelb | Structured version Visualization version GIF version |
Description: An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.) |
Ref | Expression |
---|---|
prprelb | ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprvalpw 44855 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})})) |
3 | eqeq1 2742 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏})) | |
4 | 3 | anbi2d 628 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
5 | 4 | 2rexbidv 3228 | . . . 4 ⊢ (𝑝 = 𝑃 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
6 | 5 | elrab 3617 | . . 3 ⊢ (𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
7 | 2, 6 | bitrdi 286 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
8 | hash2exprb 14113 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) | |
9 | eleq1 2826 | . . . . . . . . . 10 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
10 | prelpw 5356 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
11 | 10 | el2v 3430 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉) |
12 | 11 | biimpri 227 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
13 | 9, 12 | syl6bi 252 | . . . . . . . . 9 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
14 | 13 | com12 32 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝒫 𝑉 → (𝑃 = {𝑎, 𝑏} → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
15 | 14 | adantld 490 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
16 | 15 | pm4.71rd 562 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
17 | 16 | 2exbidv 1928 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
18 | r2ex 3231 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) | |
19 | 17, 18 | bitr4di 288 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
20 | 8, 19 | bitr2d 279 | . . 3 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ (♯‘𝑃) = 2)) |
21 | 20 | pm5.32i 574 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
22 | 7, 21 | bitrdi 286 | 1 ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∃wrex 3064 {crab 3067 Vcvv 3422 𝒫 cpw 4530 {cpr 4560 ‘cfv 6418 2c2 11958 ♯chash 13972 Pairspropercprpr 44852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-prpr 44853 |
This theorem is referenced by: prprreueq 44860 |
Copyright terms: Public domain | W3C validator |