Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprelb Structured version   Visualization version   GIF version

Theorem prprelb 47501
Description: An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprelb (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))

Proof of Theorem prprelb
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prprvalpw 47500 . . . 4 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
21eleq2d 2814 . . 3 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})}))
3 eqeq1 2733 . . . . . 6 (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏}))
43anbi2d 630 . . . . 5 (𝑝 = 𝑃 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
542rexbidv 3194 . . . 4 (𝑝 = 𝑃 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
65elrab 3650 . . 3 (𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
72, 6bitrdi 287 . 2 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
8 hash2exprb 14396 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏})))
9 eleq1 2816 . . . . . . . . . 10 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
10 prelpw 5393 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
1110el2v 3445 . . . . . . . . . . 11 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)
1211biimpri 228 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉))
139, 12biimtrdi 253 . . . . . . . . 9 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
1413com12 32 . . . . . . . 8 (𝑃 ∈ 𝒫 𝑉 → (𝑃 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉)))
1514adantld 490 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉)))
1615pm4.71rd 562 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
17162exbidv 1924 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
18 r2ex 3166 . . . . 5 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
1917, 18bitr4di 289 . . . 4 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
208, 19bitr2d 280 . . 3 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ (♯‘𝑃) = 2))
2120pm5.32i 574 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
227, 21bitrdi 287 1 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {crab 3396  Vcvv 3438  𝒫 cpw 4553  {cpr 4581  cfv 6486  2c2 12201  chash 14255  Pairspropercprpr 47497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-hash 14256  df-prpr 47498
This theorem is referenced by:  prprreueq  47505
  Copyright terms: Public domain W3C validator