![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prprelb | Structured version Visualization version GIF version |
Description: An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.) |
Ref | Expression |
---|---|
prprelb | ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprvalpw 43045 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → (Pairsproper‘𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) | |
2 | 1 | eleq2d 2845 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})})) |
3 | eqeq1 2776 | . . . . . 6 ⊢ (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏})) | |
4 | 3 | anbi2d 619 | . . . . 5 ⊢ (𝑝 = 𝑃 → ((𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
5 | 4 | 2rexbidv 3239 | . . . 4 ⊢ (𝑝 = 𝑃 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
6 | 5 | elrab 3589 | . . 3 ⊢ (𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
7 | 2, 6 | syl6bb 279 | . 2 ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
8 | hash2exprb 13634 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) | |
9 | eleq1 2847 | . . . . . . . . . 10 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
10 | prelpw 5189 | . . . . . . . . . . . 12 ⊢ ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)) | |
11 | 10 | el2v 3416 | . . . . . . . . . . 11 ⊢ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉) |
12 | 11 | biimpri 220 | . . . . . . . . . 10 ⊢ ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉)) |
13 | 9, 12 | syl6bi 245 | . . . . . . . . 9 ⊢ (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
14 | 13 | com12 32 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝒫 𝑉 → (𝑃 = {𝑎, 𝑏} → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
15 | 14 | adantld 483 | . . . . . . 7 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) → (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉))) |
16 | 15 | pm4.71rd 555 | . . . . . 6 ⊢ (𝑃 ∈ 𝒫 𝑉 → ((𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
17 | 16 | 2exbidv 1883 | . . . . 5 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})))) |
18 | r2ex 3242 | . . . . 5 ⊢ (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎∃𝑏((𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) | |
19 | 17, 18 | syl6bbr 281 | . . . 4 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑎∃𝑏(𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}))) |
20 | 8, 19 | bitr2d 272 | . . 3 ⊢ (𝑃 ∈ 𝒫 𝑉 → (∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏}) ↔ (♯‘𝑃) = 2)) |
21 | 20 | pm5.32i 567 | . 2 ⊢ ((𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 (𝑎 ≠ 𝑏 ∧ 𝑃 = {𝑎, 𝑏})) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)) |
22 | 7, 21 | syl6bb 279 | 1 ⊢ (𝑉 ∈ 𝑊 → (𝑃 ∈ (Pairsproper‘𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∃wex 1742 ∈ wcel 2050 ≠ wne 2961 ∃wrex 3083 {crab 3086 Vcvv 3409 𝒫 cpw 4416 {cpr 4437 ‘cfv 6182 2c2 11489 ♯chash 13499 Pairspropercprpr 43042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10385 ax-resscn 10386 ax-1cn 10387 ax-icn 10388 ax-addcl 10389 ax-addrcl 10390 ax-mulcl 10391 ax-mulrcl 10392 ax-mulcom 10393 ax-addass 10394 ax-mulass 10395 ax-distr 10396 ax-i2m1 10397 ax-1ne0 10398 ax-1rid 10399 ax-rnegex 10400 ax-rrecex 10401 ax-cnre 10402 ax-pre-lttri 10403 ax-pre-lttrn 10404 ax-pre-ltadd 10405 ax-pre-mulgt0 10406 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-pss 3839 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5306 df-eprel 5311 df-po 5320 df-so 5321 df-fr 5360 df-we 5362 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7495 df-2nd 7496 df-wrecs 7744 df-recs 7806 df-rdg 7844 df-1o 7899 df-2o 7900 df-oadd 7903 df-er 8083 df-en 8301 df-dom 8302 df-sdom 8303 df-fin 8304 df-dju 9118 df-card 9156 df-pnf 10470 df-mnf 10471 df-xr 10472 df-ltxr 10473 df-le 10474 df-sub 10666 df-neg 10667 df-nn 11434 df-2 11497 df-n0 11702 df-z 11788 df-uz 12053 df-fz 12703 df-hash 13500 df-prpr 43043 |
This theorem is referenced by: prprreueq 43050 |
Copyright terms: Public domain | W3C validator |