Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prprelb Structured version   Visualization version   GIF version

Theorem prprelb 47546
Description: An element of the set of all proper unordered pairs over a given set 𝑉 is a subset of 𝑉 of size two. (Contributed by AV, 29-Apr-2023.)
Assertion
Ref Expression
prprelb (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))

Proof of Theorem prprelb
Dummy variables 𝑎 𝑏 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prprvalpw 47545 . . . 4 (𝑉𝑊 → (Pairsproper𝑉) = {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
21eleq2d 2817 . . 3 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ 𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})}))
3 eqeq1 2735 . . . . . 6 (𝑝 = 𝑃 → (𝑝 = {𝑎, 𝑏} ↔ 𝑃 = {𝑎, 𝑏}))
43anbi2d 630 . . . . 5 (𝑝 = 𝑃 → ((𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
542rexbidv 3197 . . . 4 (𝑝 = 𝑃 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
65elrab 3647 . . 3 (𝑃 ∈ {𝑝 ∈ 𝒫 𝑉 ∣ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑝 = {𝑎, 𝑏})} ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
72, 6bitrdi 287 . 2 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
8 hash2exprb 14375 . . . 4 (𝑃 ∈ 𝒫 𝑉 → ((♯‘𝑃) = 2 ↔ ∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏})))
9 eleq1 2819 . . . . . . . . . 10 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
10 prelpw 5387 . . . . . . . . . . . 12 ((𝑎 ∈ V ∧ 𝑏 ∈ V) → ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉))
1110el2v 3443 . . . . . . . . . . 11 ((𝑎𝑉𝑏𝑉) ↔ {𝑎, 𝑏} ∈ 𝒫 𝑉)
1211biimpri 228 . . . . . . . . . 10 ({𝑎, 𝑏} ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉))
139, 12biimtrdi 253 . . . . . . . . 9 (𝑃 = {𝑎, 𝑏} → (𝑃 ∈ 𝒫 𝑉 → (𝑎𝑉𝑏𝑉)))
1413com12 32 . . . . . . . 8 (𝑃 ∈ 𝒫 𝑉 → (𝑃 = {𝑎, 𝑏} → (𝑎𝑉𝑏𝑉)))
1514adantld 490 . . . . . . 7 (𝑃 ∈ 𝒫 𝑉 → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) → (𝑎𝑉𝑏𝑉)))
1615pm4.71rd 562 . . . . . 6 (𝑃 ∈ 𝒫 𝑉 → ((𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
17162exbidv 1925 . . . . 5 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏}))))
18 r2ex 3169 . . . . 5 (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑏((𝑎𝑉𝑏𝑉) ∧ (𝑎𝑏𝑃 = {𝑎, 𝑏})))
1917, 18bitr4di 289 . . . 4 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑏(𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})))
208, 19bitr2d 280 . . 3 (𝑃 ∈ 𝒫 𝑉 → (∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏}) ↔ (♯‘𝑃) = 2))
2120pm5.32i 574 . 2 ((𝑃 ∈ 𝒫 𝑉 ∧ ∃𝑎𝑉𝑏𝑉 (𝑎𝑏𝑃 = {𝑎, 𝑏})) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2))
227, 21bitrdi 287 1 (𝑉𝑊 → (𝑃 ∈ (Pairsproper𝑉) ↔ (𝑃 ∈ 𝒫 𝑉 ∧ (♯‘𝑃) = 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wrex 3056  {crab 3395  Vcvv 3436  𝒫 cpw 4550  {cpr 4578  cfv 6481  2c2 12177  chash 14234  Pairspropercprpr 47542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-hash 14235  df-prpr 47543
This theorem is referenced by:  prprreueq  47550
  Copyright terms: Public domain W3C validator