Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2cv Structured version   Visualization version   GIF version

Theorem pr2cv 43539
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pr2cv ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem pr2cv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 en2 9311 . 2 ({𝐴, 𝐵} ≈ 2o → ∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦})
2 breq1 5144 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
3 vex 3483 . . . . . . 7 𝑥 ∈ V
4 vex 3483 . . . . . . 7 𝑦 ∈ V
5 pr2ne 10040 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3486 . . . . . . . 8 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
76biimpi 216 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
8 preq12nebg 4861 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴))))
9 eqvisset 3499 . . . . . . . . . 10 (𝑥 = 𝐴𝐴 ∈ V)
10 eqvisset 3499 . . . . . . . . . 10 (𝑦 = 𝐵𝐵 ∈ V)
119, 10anim12i 613 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
12 eqvisset 3499 . . . . . . . . . 10 (𝑥 = 𝐵𝐵 ∈ V)
13 eqvisset 3499 . . . . . . . . . 10 (𝑦 = 𝐴𝐴 ∈ V)
1412, 13anim12ci 614 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1511, 14jaoi 858 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
168, 15biimtrdi 253 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
173, 4, 7, 16mp3an12i 1467 . . . . . 6 ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1817com12 32 . . . . 5 ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1918eqcoms 2744 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
202, 19sylbid 240 . . 3 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
2120exlimivv 1932 . 2 (∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
221, 21mpcom 38 1 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2939  Vcvv 3479  {cpr 4626   class class class wbr 5141  2oc2o 8496  cen 8978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-tr 5258  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-ord 6385  df-on 6386  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-1o 8502  df-2o 8503  df-en 8982
This theorem is referenced by:  pr2el1  43540  pr2cv1  43541  pr2el2  43542  pr2cv2  43543  pren2  43544
  Copyright terms: Public domain W3C validator