Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2cv Structured version   Visualization version   GIF version

Theorem pr2cv 43506
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pr2cv ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem pr2cv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 en2 9337 . 2 ({𝐴, 𝐵} ≈ 2o → ∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦})
2 breq1 5169 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
3 vex 3492 . . . . . . 7 𝑥 ∈ V
4 vex 3492 . . . . . . 7 𝑦 ∈ V
5 pr2ne 10067 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3495 . . . . . . . 8 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
76biimpi 216 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
8 preq12nebg 4887 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴))))
9 eqvisset 3508 . . . . . . . . . 10 (𝑥 = 𝐴𝐴 ∈ V)
10 eqvisset 3508 . . . . . . . . . 10 (𝑦 = 𝐵𝐵 ∈ V)
119, 10anim12i 612 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
12 eqvisset 3508 . . . . . . . . . 10 (𝑥 = 𝐵𝐵 ∈ V)
13 eqvisset 3508 . . . . . . . . . 10 (𝑦 = 𝐴𝐴 ∈ V)
1412, 13anim12ci 613 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1511, 14jaoi 856 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
168, 15biimtrdi 253 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
173, 4, 7, 16mp3an12i 1465 . . . . . 6 ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1817com12 32 . . . . 5 ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1918eqcoms 2748 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
202, 19sylbid 240 . . 3 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
2120exlimivv 1931 . 2 (∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
221, 21mpcom 38 1 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  Vcvv 3488  {cpr 4650   class class class wbr 5166  2oc2o 8510  cen 8994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5650  df-we 5652  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-ord 6393  df-on 6394  df-suc 6396  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-1o 8516  df-2o 8517  df-en 8998
This theorem is referenced by:  pr2el1  43507  pr2cv1  43508  pr2el2  43509  pr2cv2  43510  pren2  43511
  Copyright terms: Public domain W3C validator