| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2cv | Structured version Visualization version GIF version | ||
| Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
| Ref | Expression |
|---|---|
| pr2cv | ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2 9232 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o → ∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦}) | |
| 2 | breq1 5112 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o)) | |
| 3 | vex 3454 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 4 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 5 | pr2ne 9963 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦)) | |
| 6 | 5 | el2v 3457 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦) |
| 7 | 6 | biimpi 216 | . . . . . . 7 ⊢ ({𝑥, 𝑦} ≈ 2o → 𝑥 ≠ 𝑦) |
| 8 | preq12nebg 4829 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)))) | |
| 9 | eqvisset 3470 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | |
| 10 | eqvisset 3470 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
| 11 | 9, 10 | anim12i 613 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 12 | eqvisset 3470 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → 𝐵 ∈ V) | |
| 13 | eqvisset 3470 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) | |
| 14 | 12, 13 | anim12ci 614 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 15 | 11, 14 | jaoi 857 | . . . . . . . 8 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| 16 | 8, 15 | biimtrdi 253 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 17 | 3, 4, 7, 16 | mp3an12i 1467 | . . . . . 6 ⊢ ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 18 | 17 | com12 32 | . . . . 5 ⊢ ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 19 | 18 | eqcoms 2738 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 20 | 2, 19 | sylbid 240 | . . 3 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 21 | 20 | exlimivv 1932 | . 2 ⊢ (∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
| 22 | 1, 21 | mpcom 38 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 {cpr 4593 class class class wbr 5109 2oc2o 8430 ≈ cen 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-1o 8436 df-2o 8437 df-en 8921 |
| This theorem is referenced by: pr2el1 43531 pr2cv1 43532 pr2el2 43533 pr2cv2 43534 pren2 43535 |
| Copyright terms: Public domain | W3C validator |