Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2cv | Structured version Visualization version GIF version |
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
Ref | Expression |
---|---|
pr2cv | ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2 9053 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o → ∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦}) | |
2 | breq1 5077 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o)) | |
3 | vex 3436 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | pr2ne 9761 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦)) | |
6 | 5 | el2v 3440 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦) |
7 | 6 | biimpi 215 | . . . . . . 7 ⊢ ({𝑥, 𝑦} ≈ 2o → 𝑥 ≠ 𝑦) |
8 | preq12nebg 4793 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)))) | |
9 | eqvisset 3449 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | |
10 | eqvisset 3449 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
11 | 9, 10 | anim12i 613 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
12 | eqvisset 3449 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → 𝐵 ∈ V) | |
13 | eqvisset 3449 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) | |
14 | 12, 13 | anim12ci 614 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | 11, 14 | jaoi 854 | . . . . . . . 8 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
16 | 8, 15 | syl6bi 252 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
17 | 3, 4, 7, 16 | mp3an12i 1464 | . . . . . 6 ⊢ ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
18 | 17 | com12 32 | . . . . 5 ⊢ ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
19 | 18 | eqcoms 2746 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
20 | 2, 19 | sylbid 239 | . . 3 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
21 | 20 | exlimivv 1935 | . 2 ⊢ (∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
22 | 1, 21 | mpcom 38 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 {cpr 4563 class class class wbr 5074 2oc2o 8291 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 |
This theorem is referenced by: pr2el1 41156 pr2cv1 41157 pr2el2 41158 pr2cv2 41159 pren2 41160 |
Copyright terms: Public domain | W3C validator |