Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2cv Structured version   Visualization version   GIF version

Theorem pr2cv 42285
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.)
Assertion
Ref Expression
pr2cv ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem pr2cv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 en2 9278 . 2 ({𝐴, 𝐵} ≈ 2o → ∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦})
2 breq1 5151 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o))
3 vex 3479 . . . . . . 7 𝑥 ∈ V
4 vex 3479 . . . . . . 7 𝑦 ∈ V
5 pr2ne 9996 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o𝑥𝑦))
65el2v 3483 . . . . . . . 8 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
76biimpi 215 . . . . . . 7 ({𝑥, 𝑦} ≈ 2o𝑥𝑦)
8 preq12nebg 4863 . . . . . . . 8 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴))))
9 eqvisset 3492 . . . . . . . . . 10 (𝑥 = 𝐴𝐴 ∈ V)
10 eqvisset 3492 . . . . . . . . . 10 (𝑦 = 𝐵𝐵 ∈ V)
119, 10anim12i 614 . . . . . . . . 9 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
12 eqvisset 3492 . . . . . . . . . 10 (𝑥 = 𝐵𝐵 ∈ V)
13 eqvisset 3492 . . . . . . . . . 10 (𝑦 = 𝐴𝐴 ∈ V)
1412, 13anim12ci 615 . . . . . . . . 9 ((𝑥 = 𝐵𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1511, 14jaoi 856 . . . . . . . 8 (((𝑥 = 𝐴𝑦 = 𝐵) ∨ (𝑥 = 𝐵𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
168, 15syl6bi 253 . . . . . . 7 ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
173, 4, 7, 16mp3an12i 1466 . . . . . 6 ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1817com12 32 . . . . 5 ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
1918eqcoms 2741 . . . 4 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
202, 19sylbid 239 . . 3 ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
2120exlimivv 1936 . 2 (∃𝑥𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)))
221, 21mpcom 38 1 ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wex 1782  wcel 2107  wne 2941  Vcvv 3475  {cpr 4630   class class class wbr 5148  2oc2o 8457  cen 8933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ord 6365  df-on 6366  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-1o 8463  df-2o 8464  df-en 8937
This theorem is referenced by:  pr2el1  42286  pr2cv1  42287  pr2el2  42288  pr2cv2  42289  pren2  42290
  Copyright terms: Public domain W3C validator