![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2cv | Structured version Visualization version GIF version |
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
Ref | Expression |
---|---|
pr2cv | ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2 9337 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o → ∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦}) | |
2 | breq1 5169 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o)) | |
3 | vex 3492 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | pr2ne 10067 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦)) | |
6 | 5 | el2v 3495 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦) |
7 | 6 | biimpi 216 | . . . . . . 7 ⊢ ({𝑥, 𝑦} ≈ 2o → 𝑥 ≠ 𝑦) |
8 | preq12nebg 4887 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)))) | |
9 | eqvisset 3508 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | |
10 | eqvisset 3508 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
11 | 9, 10 | anim12i 612 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
12 | eqvisset 3508 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → 𝐵 ∈ V) | |
13 | eqvisset 3508 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) | |
14 | 12, 13 | anim12ci 613 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | 11, 14 | jaoi 856 | . . . . . . . 8 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
16 | 8, 15 | biimtrdi 253 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
17 | 3, 4, 7, 16 | mp3an12i 1465 | . . . . . 6 ⊢ ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
18 | 17 | com12 32 | . . . . 5 ⊢ ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
19 | 18 | eqcoms 2748 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
20 | 2, 19 | sylbid 240 | . . 3 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
21 | 20 | exlimivv 1931 | . 2 ⊢ (∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
22 | 1, 21 | mpcom 38 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 ∧ w3a 1087 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 {cpr 4650 class class class wbr 5166 2oc2o 8510 ≈ cen 8994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-ord 6393 df-on 6394 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-1o 8516 df-2o 8517 df-en 8998 |
This theorem is referenced by: pr2el1 43507 pr2cv1 43508 pr2el2 43509 pr2cv2 43510 pren2 43511 |
Copyright terms: Public domain | W3C validator |