![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2cv | Structured version Visualization version GIF version |
Description: If an unordered pair is equinumerous to ordinal two, then both parts are sets. (Contributed by RP, 8-Oct-2023.) |
Ref | Expression |
---|---|
pr2cv | ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | en2 9278 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o → ∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦}) | |
2 | breq1 5151 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o ↔ {𝑥, 𝑦} ≈ 2o)) | |
3 | vex 3479 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
4 | vex 3479 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
5 | pr2ne 9996 | . . . . . . . . 9 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦)) | |
6 | 5 | el2v 3483 | . . . . . . . 8 ⊢ ({𝑥, 𝑦} ≈ 2o ↔ 𝑥 ≠ 𝑦) |
7 | 6 | biimpi 215 | . . . . . . 7 ⊢ ({𝑥, 𝑦} ≈ 2o → 𝑥 ≠ 𝑦) |
8 | preq12nebg 4863 | . . . . . . . 8 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} ↔ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)))) | |
9 | eqvisset 3492 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝐴 ∈ V) | |
10 | eqvisset 3492 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → 𝐵 ∈ V) | |
11 | 9, 10 | anim12i 614 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
12 | eqvisset 3492 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐵 → 𝐵 ∈ V) | |
13 | eqvisset 3492 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) | |
14 | 12, 13 | anim12ci 615 | . . . . . . . . 9 ⊢ ((𝑥 = 𝐵 ∧ 𝑦 = 𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
15 | 11, 14 | jaoi 856 | . . . . . . . 8 ⊢ (((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∨ (𝑥 = 𝐵 ∧ 𝑦 = 𝐴)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
16 | 8, 15 | syl6bi 253 | . . . . . . 7 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑥 ≠ 𝑦) → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
17 | 3, 4, 7, 16 | mp3an12i 1466 | . . . . . 6 ⊢ ({𝑥, 𝑦} ≈ 2o → ({𝑥, 𝑦} = {𝐴, 𝐵} → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
18 | 17 | com12 32 | . . . . 5 ⊢ ({𝑥, 𝑦} = {𝐴, 𝐵} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
19 | 18 | eqcoms 2741 | . . . 4 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝑥, 𝑦} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
20 | 2, 19 | sylbid 239 | . . 3 ⊢ ({𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
21 | 20 | exlimivv 1936 | . 2 ⊢ (∃𝑥∃𝑦{𝐴, 𝐵} = {𝑥, 𝑦} → ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V))) |
22 | 1, 21 | mpcom 38 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 {cpr 4630 class class class wbr 5148 2oc2o 8457 ≈ cen 8933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6365 df-on 6366 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-1o 8463 df-2o 8464 df-en 8937 |
This theorem is referenced by: pr2el1 42286 pr2cv1 42287 pr2el2 42288 pr2cv2 42289 pren2 42290 |
Copyright terms: Public domain | W3C validator |