MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ss Structured version   Visualization version   GIF version

Theorem sylan9ss 3951
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypotheses
Ref Expression
sylan9ss.1 (𝜑𝐴𝐵)
sylan9ss.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ss ((𝜑𝜓) → 𝐴𝐶)

Proof of Theorem sylan9ss
StepHypRef Expression
1 sylan9ss.1 . 2 (𝜑𝐴𝐵)
2 sylan9ss.2 . 2 (𝜓𝐵𝐶)
3 sstr 3946 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2an 596 1 ((𝜑𝜓) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3922
This theorem is referenced by:  sylan9ssr  3952  psstr  4060  unss12  4141  ss2in  4198  ssdisj  4413  relrelss  6225  funssxp  6684  axdc3lem  10363  tskuni  10696  rtrclreclem4  14987  tsmsxp  24059  shslubi  31348  chlej12i  31438  insiga  34123  fnetr  36344  pcl0bN  39922  brtrclfv2  43720
  Copyright terms: Public domain W3C validator