MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ss Structured version   Visualization version   GIF version

Theorem sylan9ss 3960
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypotheses
Ref Expression
sylan9ss.1 (𝜑𝐴𝐵)
sylan9ss.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ss ((𝜑𝜓) → 𝐴𝐶)

Proof of Theorem sylan9ss
StepHypRef Expression
1 sylan9ss.1 . 2 (𝜑𝐴𝐵)
2 sylan9ss.2 . 2 (𝜓𝐵𝐶)
3 sstr 3955 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2an 596 1 ((𝜑𝜓) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3931
This theorem is referenced by:  sylan9ssr  3961  psstr  4070  unss12  4151  ss2in  4208  ssdisj  4423  relrelss  6246  funssxp  6716  axdc3lem  10403  tskuni  10736  rtrclreclem4  15027  tsmsxp  24042  shslubi  31314  chlej12i  31404  insiga  34127  fnetr  36339  pcl0bN  39917  brtrclfv2  43716
  Copyright terms: Public domain W3C validator