MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ss Structured version   Visualization version   GIF version

Theorem sylan9ss 3944
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypotheses
Ref Expression
sylan9ss.1 (𝜑𝐴𝐵)
sylan9ss.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ss ((𝜑𝜓) → 𝐴𝐶)

Proof of Theorem sylan9ss
StepHypRef Expression
1 sylan9ss.1 . 2 (𝜑𝐴𝐵)
2 sylan9ss.2 . 2 (𝜓𝐵𝐶)
3 sstr 3939 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2an 596 1 ((𝜑𝜓) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3915
This theorem is referenced by:  sylan9ssr  3945  psstr  4056  unss12  4137  ss2in  4194  ssdisj  4409  relrelss  6228  funssxp  6687  axdc3lem  10352  tskuni  10685  rtrclreclem4  14975  tsmsxp  24090  shslubi  31386  chlej12i  31476  insiga  34222  fnetr  36467  pcl0bN  40095  brtrclfv2  43884
  Copyright terms: Public domain W3C validator