| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9ss | Structured version Visualization version GIF version | ||
| Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sylan9ss.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sylan9ss.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sylan9ss | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ss.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sylan9ss.2 | . 2 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
| 3 | sstr 3967 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3943 |
| This theorem is referenced by: sylan9ssr 3973 psstr 4082 unss12 4163 ss2in 4220 ssdisj 4435 relrelss 6262 funssxp 6734 axdc3lem 10464 tskuni 10797 rtrclreclem4 15080 tsmsxp 24093 shslubi 31366 chlej12i 31456 insiga 34168 fnetr 36369 pcl0bN 39942 brtrclfv2 43751 |
| Copyright terms: Public domain | W3C validator |