| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylan9ss | Structured version Visualization version GIF version | ||
| Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
| Ref | Expression |
|---|---|
| sylan9ss.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| sylan9ss.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
| Ref | Expression |
|---|---|
| sylan9ss | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylan9ss.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | sylan9ss.2 | . 2 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
| 3 | sstr 3938 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
| 4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ss 3914 |
| This theorem is referenced by: sylan9ssr 3944 psstr 4052 unss12 4133 ss2in 4190 ssdisj 4405 relrelss 6215 funssxp 6674 axdc3lem 10336 tskuni 10669 rtrclreclem4 14963 tsmsxp 24065 shslubi 31357 chlej12i 31447 insiga 34142 fnetr 36385 pcl0bN 39962 brtrclfv2 43760 |
| Copyright terms: Public domain | W3C validator |