MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylan9ss Structured version   Visualization version   GIF version

Theorem sylan9ss 3972
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypotheses
Ref Expression
sylan9ss.1 (𝜑𝐴𝐵)
sylan9ss.2 (𝜓𝐵𝐶)
Assertion
Ref Expression
sylan9ss ((𝜑𝜓) → 𝐴𝐶)

Proof of Theorem sylan9ss
StepHypRef Expression
1 sylan9ss.1 . 2 (𝜑𝐴𝐵)
2 sylan9ss.2 . 2 (𝜓𝐵𝐶)
3 sstr 3967 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
41, 2, 3syl2an 596 1 ((𝜑𝜓) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ss 3943
This theorem is referenced by:  sylan9ssr  3973  psstr  4082  unss12  4163  ss2in  4220  ssdisj  4435  relrelss  6262  funssxp  6734  axdc3lem  10464  tskuni  10797  rtrclreclem4  15080  tsmsxp  24093  shslubi  31366  chlej12i  31456  insiga  34168  fnetr  36369  pcl0bN  39942  brtrclfv2  43751
  Copyright terms: Public domain W3C validator