Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylan9ss | Structured version Visualization version GIF version |
Description: A subclass transitivity deduction. (Contributed by NM, 27-Sep-2004.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
sylan9ss.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
sylan9ss.2 | ⊢ (𝜓 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
sylan9ss | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9ss.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | sylan9ss.2 | . 2 ⊢ (𝜓 → 𝐵 ⊆ 𝐶) | |
3 | sstr 3929 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐶) → 𝐴 ⊆ 𝐶) | |
4 | 1, 2, 3 | syl2an 596 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: sylan9ssr 3935 psstr 4039 unss12 4116 ss2in 4170 ssdisj 4393 relrelss 6176 funssxp 6629 axdc3lem 10206 tskuni 10539 rtrclreclem4 14772 tsmsxp 23306 shslubi 29747 chlej12i 29837 insiga 32105 fnetr 34540 pcl0bN 37937 brtrclfv2 41335 |
Copyright terms: Public domain | W3C validator |