Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stmbfm Structured version   Visualization version   GIF version

Theorem 1stmbfm 31628
Description: The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1 (𝜑𝑆 ran sigAlgebra)
1stmbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
1stmbfm (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆))

Proof of Theorem 1stmbfm
Dummy variables 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 7695 . . . 4 (1st ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑆
2 1stmbfm.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
3 1stmbfm.2 . . . . . 6 (𝜑𝑇 ran sigAlgebra)
4 sxuni 31562 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
52, 3, 4syl2anc 587 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
65feq2d 6473 . . . 4 (𝜑 → ((1st ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑆 ↔ (1st ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑆))
71, 6mpbii 236 . . 3 (𝜑 → (1st ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑆)
8 unielsiga 31497 . . . . 5 (𝑆 ran sigAlgebra → 𝑆𝑆)
92, 8syl 17 . . . 4 (𝜑 𝑆𝑆)
10 sxsiga 31560 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
112, 3, 10syl2anc 587 . . . . 5 (𝜑 → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
12 unielsiga 31497 . . . . 5 ((𝑆 ×s 𝑇) ∈ ran sigAlgebra → (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
1311, 12syl 17 . . . 4 (𝜑 (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
149, 13elmapd 8403 . . 3 (𝜑 → ((1st ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑆m (𝑆 ×s 𝑇)) ↔ (1st ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑆))
157, 14mpbird 260 . 2 (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑆m (𝑆 ×s 𝑇)))
16 ffn 6487 . . . . . . . 8 ((1st ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑆 → (1st ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇))
17 elpreima 6805 . . . . . . . 8 ((1st ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇) → (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎)))
181, 16, 17mp2b 10 . . . . . . 7 (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎))
19 fvres 6664 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) = (1st𝑧))
2019eleq1d 2874 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎 ↔ (1st𝑧) ∈ 𝑎))
21 1st2nd2 7710 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
22 xp2nd 7704 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → (2nd𝑧) ∈ 𝑇)
23 elxp6 7705 . . . . . . . . . . . 12 (𝑧 ∈ (𝑎 × 𝑇) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑎 ∧ (2nd𝑧) ∈ 𝑇)))
24 anass 472 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑎) ∧ (2nd𝑧) ∈ 𝑇) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑎 ∧ (2nd𝑧) ∈ 𝑇)))
25 an32 645 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑎) ∧ (2nd𝑧) ∈ 𝑇) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑇) ∧ (1st𝑧) ∈ 𝑎))
2623, 24, 253bitr2i 302 . . . . . . . . . . 11 (𝑧 ∈ (𝑎 × 𝑇) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑇) ∧ (1st𝑧) ∈ 𝑎))
2726baib 539 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑇) → (𝑧 ∈ (𝑎 × 𝑇) ↔ (1st𝑧) ∈ 𝑎))
2821, 22, 27syl2anc 587 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (𝑧 ∈ (𝑎 × 𝑇) ↔ (1st𝑧) ∈ 𝑎))
2920, 28bitr4d 285 . . . . . . . 8 (𝑧 ∈ ( 𝑆 × 𝑇) → (((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎𝑧 ∈ (𝑎 × 𝑇)))
3029pm5.32i 578 . . . . . . 7 ((𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ (𝑎 × 𝑇)))
3118, 30bitri 278 . . . . . 6 (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ (𝑎 × 𝑇)))
32 sgon 31493 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
33 sigasspw 31485 . . . . . . . . . . 11 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆 ⊆ 𝒫 𝑆)
34 pwssb 4986 . . . . . . . . . . . 12 (𝑆 ⊆ 𝒫 𝑆 ↔ ∀𝑎𝑆 𝑎 𝑆)
3534biimpi 219 . . . . . . . . . . 11 (𝑆 ⊆ 𝒫 𝑆 → ∀𝑎𝑆 𝑎 𝑆)
362, 32, 33, 354syl 19 . . . . . . . . . 10 (𝜑 → ∀𝑎𝑆 𝑎 𝑆)
3736r19.21bi 3173 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎 𝑆)
38 xpss1 5538 . . . . . . . . 9 (𝑎 𝑆 → (𝑎 × 𝑇) ⊆ ( 𝑆 × 𝑇))
3937, 38syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑎 × 𝑇) ⊆ ( 𝑆 × 𝑇))
4039sseld 3914 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑧 ∈ (𝑎 × 𝑇) → 𝑧 ∈ ( 𝑆 × 𝑇)))
4140pm4.71rd 566 . . . . . 6 ((𝜑𝑎𝑆) → (𝑧 ∈ (𝑎 × 𝑇) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ (𝑎 × 𝑇))))
4231, 41bitr4id 293 . . . . 5 ((𝜑𝑎𝑆) → (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ 𝑧 ∈ (𝑎 × 𝑇)))
4342eqrdv 2796 . . . 4 ((𝜑𝑎𝑆) → ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) = (𝑎 × 𝑇))
442adantr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑆 ran sigAlgebra)
453adantr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑇 ran sigAlgebra)
46 simpr 488 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
47 eqid 2798 . . . . . . . 8 𝑇 = 𝑇
48 issgon 31492 . . . . . . . 8 (𝑇 ∈ (sigAlgebra‘ 𝑇) ↔ (𝑇 ran sigAlgebra ∧ 𝑇 = 𝑇))
493, 47, 48sylanblrc 593 . . . . . . 7 (𝜑𝑇 ∈ (sigAlgebra‘ 𝑇))
50 baselsiga 31484 . . . . . . 7 (𝑇 ∈ (sigAlgebra‘ 𝑇) → 𝑇𝑇)
5149, 50syl 17 . . . . . 6 (𝜑 𝑇𝑇)
5251adantr 484 . . . . 5 ((𝜑𝑎𝑆) → 𝑇𝑇)
53 elsx 31563 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) ∧ (𝑎𝑆 𝑇𝑇)) → (𝑎 × 𝑇) ∈ (𝑆 ×s 𝑇))
5444, 45, 46, 52, 53syl22anc 837 . . . 4 ((𝜑𝑎𝑆) → (𝑎 × 𝑇) ∈ (𝑆 ×s 𝑇))
5543, 54eqeltrd 2890 . . 3 ((𝜑𝑎𝑆) → ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5655ralrimiva 3149 . 2 (𝜑 → ∀𝑎𝑆 ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5711, 2ismbfm 31620 . 2 (𝜑 → ((1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆) ↔ ((1st ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑆m (𝑆 ×s 𝑇)) ∧ ∀𝑎𝑆 ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))))
5815, 56, 57mpbir2and 712 1 (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  𝒫 cpw 4497  cop 4531   cuni 4800   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  m cmap 8389  sigAlgebracsiga 31477   ×s csx 31557  MblFnMcmbfm 31618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-siga 31478  df-sigagen 31508  df-sx 31558  df-mbfm 31619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator