Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1stmbfm Structured version   Visualization version   GIF version

Theorem 1stmbfm 30769
Description: The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1 (𝜑𝑆 ran sigAlgebra)
1stmbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
1stmbfm (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆))

Proof of Theorem 1stmbfm
Dummy variables 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1stres 7390 . . . 4 (1st ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑆
2 1stmbfm.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
3 1stmbfm.2 . . . . . 6 (𝜑𝑇 ran sigAlgebra)
4 sxuni 30703 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
52, 3, 4syl2anc 579 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
65feq2d 6209 . . . 4 (𝜑 → ((1st ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑆 ↔ (1st ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑆))
71, 6mpbii 224 . . 3 (𝜑 → (1st ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑆)
8 unielsiga 30638 . . . . 5 (𝑆 ran sigAlgebra → 𝑆𝑆)
92, 8syl 17 . . . 4 (𝜑 𝑆𝑆)
10 sxsiga 30701 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
112, 3, 10syl2anc 579 . . . . 5 (𝜑 → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
12 unielsiga 30638 . . . . 5 ((𝑆 ×s 𝑇) ∈ ran sigAlgebra → (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
1311, 12syl 17 . . . 4 (𝜑 (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
149, 13elmapd 8074 . . 3 (𝜑 → ((1st ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑆𝑚 (𝑆 ×s 𝑇)) ↔ (1st ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑆))
157, 14mpbird 248 . 2 (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑆𝑚 (𝑆 ×s 𝑇)))
16 sgon 30634 . . . . . . . . . . 11 (𝑆 ran sigAlgebra → 𝑆 ∈ (sigAlgebra‘ 𝑆))
17 sigasspw 30626 . . . . . . . . . . 11 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆 ⊆ 𝒫 𝑆)
18 pwssb 4769 . . . . . . . . . . . 12 (𝑆 ⊆ 𝒫 𝑆 ↔ ∀𝑎𝑆 𝑎 𝑆)
1918biimpi 207 . . . . . . . . . . 11 (𝑆 ⊆ 𝒫 𝑆 → ∀𝑎𝑆 𝑎 𝑆)
202, 16, 17, 194syl 19 . . . . . . . . . 10 (𝜑 → ∀𝑎𝑆 𝑎 𝑆)
2120r19.21bi 3079 . . . . . . . . 9 ((𝜑𝑎𝑆) → 𝑎 𝑆)
22 xpss1 5296 . . . . . . . . 9 (𝑎 𝑆 → (𝑎 × 𝑇) ⊆ ( 𝑆 × 𝑇))
2321, 22syl 17 . . . . . . . 8 ((𝜑𝑎𝑆) → (𝑎 × 𝑇) ⊆ ( 𝑆 × 𝑇))
2423sseld 3760 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑧 ∈ (𝑎 × 𝑇) → 𝑧 ∈ ( 𝑆 × 𝑇)))
2524pm4.71rd 558 . . . . . 6 ((𝜑𝑎𝑆) → (𝑧 ∈ (𝑎 × 𝑇) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ (𝑎 × 𝑇))))
26 ffn 6223 . . . . . . . 8 ((1st ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑆 → (1st ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇))
27 elpreima 6527 . . . . . . . 8 ((1st ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇) → (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎)))
281, 26, 27mp2b 10 . . . . . . 7 (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎))
29 fvres 6394 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) = (1st𝑧))
3029eleq1d 2829 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎 ↔ (1st𝑧) ∈ 𝑎))
31 1st2nd2 7405 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
32 xp2nd 7399 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → (2nd𝑧) ∈ 𝑇)
33 elxp6 7400 . . . . . . . . . . . 12 (𝑧 ∈ (𝑎 × 𝑇) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑎 ∧ (2nd𝑧) ∈ 𝑇)))
34 anass 460 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑎) ∧ (2nd𝑧) ∈ 𝑇) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑎 ∧ (2nd𝑧) ∈ 𝑇)))
35 an32 636 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑎) ∧ (2nd𝑧) ∈ 𝑇) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑇) ∧ (1st𝑧) ∈ 𝑎))
3633, 34, 353bitr2i 290 . . . . . . . . . . 11 (𝑧 ∈ (𝑎 × 𝑇) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑇) ∧ (1st𝑧) ∈ 𝑎))
3736baib 531 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (2nd𝑧) ∈ 𝑇) → (𝑧 ∈ (𝑎 × 𝑇) ↔ (1st𝑧) ∈ 𝑎))
3831, 32, 37syl2anc 579 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (𝑧 ∈ (𝑎 × 𝑇) ↔ (1st𝑧) ∈ 𝑎))
3930, 38bitr4d 273 . . . . . . . 8 (𝑧 ∈ ( 𝑆 × 𝑇) → (((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎𝑧 ∈ (𝑎 × 𝑇)))
4039pm5.32i 570 . . . . . . 7 ((𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((1st ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ (𝑎 × 𝑇)))
4128, 40bitri 266 . . . . . 6 (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ (𝑎 × 𝑇)))
4225, 41syl6rbbr 281 . . . . 5 ((𝜑𝑎𝑆) → (𝑧 ∈ ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ 𝑧 ∈ (𝑎 × 𝑇)))
4342eqrdv 2763 . . . 4 ((𝜑𝑎𝑆) → ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) = (𝑎 × 𝑇))
442adantr 472 . . . . 5 ((𝜑𝑎𝑆) → 𝑆 ran sigAlgebra)
453adantr 472 . . . . 5 ((𝜑𝑎𝑆) → 𝑇 ran sigAlgebra)
46 simpr 477 . . . . 5 ((𝜑𝑎𝑆) → 𝑎𝑆)
47 eqid 2765 . . . . . . . 8 𝑇 = 𝑇
48 issgon 30633 . . . . . . . 8 (𝑇 ∈ (sigAlgebra‘ 𝑇) ↔ (𝑇 ran sigAlgebra ∧ 𝑇 = 𝑇))
493, 47, 48sylanblrc 584 . . . . . . 7 (𝜑𝑇 ∈ (sigAlgebra‘ 𝑇))
50 baselsiga 30625 . . . . . . 7 (𝑇 ∈ (sigAlgebra‘ 𝑇) → 𝑇𝑇)
5149, 50syl 17 . . . . . 6 (𝜑 𝑇𝑇)
5251adantr 472 . . . . 5 ((𝜑𝑎𝑆) → 𝑇𝑇)
53 elsx 30704 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) ∧ (𝑎𝑆 𝑇𝑇)) → (𝑎 × 𝑇) ∈ (𝑆 ×s 𝑇))
5444, 45, 46, 52, 53syl22anc 867 . . . 4 ((𝜑𝑎𝑆) → (𝑎 × 𝑇) ∈ (𝑆 ×s 𝑇))
5543, 54eqeltrd 2844 . . 3 ((𝜑𝑎𝑆) → ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5655ralrimiva 3113 . 2 (𝜑 → ∀𝑎𝑆 ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5711, 2ismbfm 30761 . 2 (𝜑 → ((1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆) ↔ ((1st ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑆𝑚 (𝑆 ×s 𝑇)) ∧ ∀𝑎𝑆 ((1st ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))))
5815, 56, 57mpbir2and 704 1 (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wral 3055  wss 3732  𝒫 cpw 4315  cop 4340   cuni 4594   × cxp 5275  ccnv 5276  ran crn 5278  cres 5279  cima 5280   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  𝑚 cmap 8060  sigAlgebracsiga 30617   ×s csx 30698  MblFnMcmbfm 30759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-map 8062  df-siga 30618  df-sigagen 30649  df-sx 30699  df-mbfm 30760
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator