Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocucvr Structured version   Visualization version   GIF version

Theorem dya2iocucvr 31431
Description: The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocucvr ran 𝑅 = (ℝ × ℝ)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocucvr
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4868 . . 3 ( ran 𝑅 ⊆ (ℝ × ℝ) ↔ ∀𝑑 ∈ ran 𝑅 𝑑 ⊆ (ℝ × ℝ))
2 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
3 vex 3503 . . . . . 6 𝑢 ∈ V
4 vex 3503 . . . . . 6 𝑣 ∈ V
53, 4xpex 7465 . . . . 5 (𝑢 × 𝑣) ∈ V
62, 5elrnmpo 7277 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
7 simpr 485 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
8 pwssb 5020 . . . . . . . . . . . 12 (ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ)
9 dya2ioc.1 . . . . . . . . . . . . . 14 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
10 ovex 7181 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
119, 10elrnmpo 7277 . . . . . . . . . . . . 13 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
12 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
13 simpll 763 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℤ)
1413zred 12076 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℝ)
15 2re 11700 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℝ)
17 2ne0 11730 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ≠ 0)
19 simplr 765 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑛 ∈ ℤ)
2016, 18, 19reexpclzd 13600 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ∈ ℝ)
21 2cnd 11704 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℂ)
2221, 18, 19expne0d 13506 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ≠ 0)
2314, 20, 22redivcld 11457 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 / (2↑𝑛)) ∈ ℝ)
24 1red 10631 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 1 ∈ ℝ)
2514, 24readdcld 10659 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 + 1) ∈ ℝ)
2625, 20, 22redivcld 11457 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
2726rexrd 10680 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
28 icossre 12807 . . . . . . . . . . . . . . . . 17 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
2923, 27, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
3012, 29eqsstrd 4009 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ⊆ ℝ)
3130ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ))
3231rexlimivv 3297 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ)
3311, 32sylbi 218 . . . . . . . . . . . 12 (𝑑 ∈ ran 𝐼𝑑 ⊆ ℝ)
348, 33mprgbir 3158 . . . . . . . . . . 11 ran 𝐼 ⊆ 𝒫 ℝ
3534sseli 3967 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
3635elpwid 4556 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
3734sseli 3967 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
3837elpwid 4556 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
39 xpss12 5569 . . . . . . . . 9 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4036, 38, 39syl2an 595 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4140adantr 481 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
427, 41eqsstrd 4009 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ⊆ (ℝ × ℝ))
4342ex 413 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ)))
4443rexlimivv 3297 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ))
456, 44sylbi 218 . . 3 (𝑑 ∈ ran 𝑅𝑑 ⊆ (ℝ × ℝ))
461, 45mprgbir 3158 . 2 ran 𝑅 ⊆ (ℝ × ℝ)
47 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
48 retop 23288 . . . . . 6 (topGen‘ran (,)) ∈ Top
4947, 48eqeltri 2914 . . . . 5 𝐽 ∈ Top
5049, 49txtopi 22117 . . . 4 (𝐽 ×t 𝐽) ∈ Top
51 uniretop 23289 . . . . . . 7 ℝ = (topGen‘ran (,))
5247unieqi 4846 . . . . . . 7 𝐽 = (topGen‘ran (,))
5351, 52eqtr4i 2852 . . . . . 6 ℝ = 𝐽
5449, 49, 53, 53txunii 22120 . . . . 5 (ℝ × ℝ) = (𝐽 ×t 𝐽)
5554topopn 21433 . . . 4 ((𝐽 ×t 𝐽) ∈ Top → (ℝ × ℝ) ∈ (𝐽 ×t 𝐽))
5647, 9, 2dya2iocuni 31430 . . . 4 ((ℝ × ℝ) ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ))
5750, 55, 56mp2b 10 . . 3 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)
58 simpr 485 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 = (ℝ × ℝ))
59 elpwi 4554 . . . . . . 7 (𝑐 ∈ 𝒫 ran 𝑅𝑐 ⊆ ran 𝑅)
6059adantr 481 . . . . . 6 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ⊆ ran 𝑅)
6160unissd 4861 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ran 𝑅)
6258, 61eqsstrrd 4010 . . . 4 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → (ℝ × ℝ) ⊆ ran 𝑅)
6362rexlimiva 3286 . . 3 (∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ) → (ℝ × ℝ) ⊆ ran 𝑅)
6457, 63ax-mp 5 . 2 (ℝ × ℝ) ⊆ ran 𝑅
6546, 64eqssi 3987 1 ran 𝑅 = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1530  wcel 2107  wne 3021  wrex 3144  wss 3940  𝒫 cpw 4542   cuni 4837   × cxp 5552  ran crn 5555  cfv 6352  (class class class)co 7148  cmpo 7150  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663   / cdiv 11286  2c2 11681  cz 11970  (,)cioo 12728  [,)cico 12730  cexp 13419  topGenctg 16701  Topctop 21420   ×t ctx 22087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7399  df-om 7569  df-1st 7680  df-2nd 7681  df-supp 7822  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-2o 8094  df-oadd 8097  df-er 8279  df-map 8398  df-pm 8399  df-ixp 8451  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-fsupp 8823  df-fi 8864  df-sup 8895  df-inf 8896  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-4 11691  df-5 11692  df-6 11693  df-7 11694  df-8 11695  df-9 11696  df-n0 11887  df-z 11971  df-dec 12088  df-uz 12233  df-q 12338  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-ioo 12732  df-ioc 12733  df-ico 12734  df-icc 12735  df-fz 12883  df-fzo 13024  df-fl 13152  df-mod 13228  df-seq 13360  df-exp 13420  df-fac 13624  df-bc 13653  df-hash 13681  df-shft 14416  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-limsup 14818  df-clim 14835  df-rlim 14836  df-sum 15033  df-ef 15411  df-sin 15413  df-cos 15414  df-pi 15416  df-struct 16475  df-ndx 16476  df-slot 16477  df-base 16479  df-sets 16480  df-ress 16481  df-plusg 16568  df-mulr 16569  df-starv 16570  df-sca 16571  df-vsca 16572  df-ip 16573  df-tset 16574  df-ple 16575  df-ds 16577  df-unif 16578  df-hom 16579  df-cco 16580  df-rest 16686  df-topn 16687  df-0g 16705  df-gsum 16706  df-topgen 16707  df-pt 16708  df-prds 16711  df-xrs 16765  df-qtop 16770  df-imas 16771  df-xps 16773  df-mre 16847  df-mrc 16848  df-acs 16850  df-mgm 17842  df-sgrp 17890  df-mnd 17901  df-submnd 17945  df-mulg 18155  df-cntz 18377  df-cmn 18828  df-psmet 20456  df-xmet 20457  df-met 20458  df-bl 20459  df-mopn 20460  df-fbas 20461  df-fg 20462  df-cnfld 20465  df-refld 20668  df-top 21421  df-topon 21438  df-topsp 21460  df-bases 21473  df-cld 21546  df-ntr 21547  df-cls 21548  df-nei 21625  df-lp 21663  df-perf 21664  df-cn 21754  df-cnp 21755  df-haus 21842  df-cmp 21914  df-tx 22089  df-hmeo 22282  df-fil 22373  df-fm 22465  df-flim 22466  df-flf 22467  df-fcls 22468  df-xms 22848  df-ms 22849  df-tms 22850  df-cncf 23404  df-cfil 23776  df-cmet 23778  df-cms 23856  df-limc 24382  df-dv 24383  df-log 25056  df-cxp 25057  df-logb 25259
This theorem is referenced by:  sxbrsigalem1  31432  sxbrsigalem2  31433  sxbrsigalem5  31435
  Copyright terms: Public domain W3C validator