Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocucvr Structured version   Visualization version   GIF version

Theorem dya2iocucvr 34266
Description: The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocucvr ran 𝑅 = (ℝ × ℝ)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocucvr
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4944 . . 3 ( ran 𝑅 ⊆ (ℝ × ℝ) ↔ ∀𝑑 ∈ ran 𝑅 𝑑 ⊆ (ℝ × ℝ))
2 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
3 vex 3482 . . . . . 6 𝑢 ∈ V
4 vex 3482 . . . . . 6 𝑣 ∈ V
53, 4xpex 7772 . . . . 5 (𝑢 × 𝑣) ∈ V
62, 5elrnmpo 7569 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
7 simpr 484 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
8 pwssb 5106 . . . . . . . . . . . 12 (ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ)
9 dya2ioc.1 . . . . . . . . . . . . . 14 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
10 ovex 7464 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
119, 10elrnmpo 7569 . . . . . . . . . . . . 13 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
12 simpr 484 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
13 simpll 767 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℤ)
1413zred 12720 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℝ)
15 2re 12338 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℝ)
17 2ne0 12368 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ≠ 0)
19 simplr 769 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑛 ∈ ℤ)
2016, 18, 19reexpclzd 14285 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ∈ ℝ)
21 2cnd 12342 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℂ)
2221, 18, 19expne0d 14189 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ≠ 0)
2314, 20, 22redivcld 12093 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 / (2↑𝑛)) ∈ ℝ)
24 1red 11260 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 1 ∈ ℝ)
2514, 24readdcld 11288 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 + 1) ∈ ℝ)
2625, 20, 22redivcld 12093 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
2726rexrd 11309 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
28 icossre 13465 . . . . . . . . . . . . . . . . 17 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
2923, 27, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
3012, 29eqsstrd 4034 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ⊆ ℝ)
3130ex 412 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ))
3231rexlimivv 3199 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ)
3311, 32sylbi 217 . . . . . . . . . . . 12 (𝑑 ∈ ran 𝐼𝑑 ⊆ ℝ)
348, 33mprgbir 3066 . . . . . . . . . . 11 ran 𝐼 ⊆ 𝒫 ℝ
3534sseli 3991 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
3635elpwid 4614 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
3734sseli 3991 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
3837elpwid 4614 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
39 xpss12 5704 . . . . . . . . 9 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4036, 38, 39syl2an 596 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4140adantr 480 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
427, 41eqsstrd 4034 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ⊆ (ℝ × ℝ))
4342ex 412 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ)))
4443rexlimivv 3199 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ))
456, 44sylbi 217 . . 3 (𝑑 ∈ ran 𝑅𝑑 ⊆ (ℝ × ℝ))
461, 45mprgbir 3066 . 2 ran 𝑅 ⊆ (ℝ × ℝ)
47 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
48 retop 24798 . . . . . 6 (topGen‘ran (,)) ∈ Top
4947, 48eqeltri 2835 . . . . 5 𝐽 ∈ Top
5049, 49txtopi 23614 . . . 4 (𝐽 ×t 𝐽) ∈ Top
51 uniretop 24799 . . . . . . 7 ℝ = (topGen‘ran (,))
5247unieqi 4924 . . . . . . 7 𝐽 = (topGen‘ran (,))
5351, 52eqtr4i 2766 . . . . . 6 ℝ = 𝐽
5449, 49, 53, 53txunii 23617 . . . . 5 (ℝ × ℝ) = (𝐽 ×t 𝐽)
5554topopn 22928 . . . 4 ((𝐽 ×t 𝐽) ∈ Top → (ℝ × ℝ) ∈ (𝐽 ×t 𝐽))
5647, 9, 2dya2iocuni 34265 . . . 4 ((ℝ × ℝ) ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ))
5750, 55, 56mp2b 10 . . 3 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)
58 simpr 484 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 = (ℝ × ℝ))
59 elpwi 4612 . . . . . . 7 (𝑐 ∈ 𝒫 ran 𝑅𝑐 ⊆ ran 𝑅)
6059adantr 480 . . . . . 6 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ⊆ ran 𝑅)
6160unissd 4922 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ran 𝑅)
6258, 61eqsstrrd 4035 . . . 4 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → (ℝ × ℝ) ⊆ ran 𝑅)
6362rexlimiva 3145 . . 3 (∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ) → (ℝ × ℝ) ⊆ ran 𝑅)
6457, 63ax-mp 5 . 2 (ℝ × ℝ) ⊆ ran 𝑅
6546, 64eqssi 4012 1 ran 𝑅 = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  wss 3963  𝒫 cpw 4605   cuni 4912   × cxp 5687  ran crn 5690  cfv 6563  (class class class)co 7431  cmpo 7433  cr 11152  0cc0 11153  1c1 11154   + caddc 11156  *cxr 11292   / cdiv 11918  2c2 12319  cz 12611  (,)cioo 13384  [,)cico 13386  cexp 14099  topGenctg 17484  Topctop 22915   ×t ctx 23584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-refld 21641  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-fcls 23965  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-cfil 25303  df-cmet 25305  df-cms 25383  df-limc 25916  df-dv 25917  df-log 26613  df-cxp 26614  df-logb 26823
This theorem is referenced by:  sxbrsigalem1  34267  sxbrsigalem2  34268  sxbrsigalem5  34270
  Copyright terms: Public domain W3C validator