Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocucvr Structured version   Visualization version   GIF version

Theorem dya2iocucvr 31667
 Description: The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocucvr ran 𝑅 = (ℝ × ℝ)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocucvr
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4833 . . 3 ( ran 𝑅 ⊆ (ℝ × ℝ) ↔ ∀𝑑 ∈ ran 𝑅 𝑑 ⊆ (ℝ × ℝ))
2 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
3 vex 3444 . . . . . 6 𝑢 ∈ V
4 vex 3444 . . . . . 6 𝑣 ∈ V
53, 4xpex 7459 . . . . 5 (𝑢 × 𝑣) ∈ V
62, 5elrnmpo 7268 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
7 simpr 488 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
8 pwssb 4987 . . . . . . . . . . . 12 (ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ)
9 dya2ioc.1 . . . . . . . . . . . . . 14 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
10 ovex 7169 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
119, 10elrnmpo 7268 . . . . . . . . . . . . 13 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
12 simpr 488 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
13 simpll 766 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℤ)
1413zred 12078 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℝ)
15 2re 11702 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℝ)
17 2ne0 11732 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ≠ 0)
19 simplr 768 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑛 ∈ ℤ)
2016, 18, 19reexpclzd 13609 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ∈ ℝ)
21 2cnd 11706 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℂ)
2221, 18, 19expne0d 13515 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ≠ 0)
2314, 20, 22redivcld 11460 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 / (2↑𝑛)) ∈ ℝ)
24 1red 10634 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 1 ∈ ℝ)
2514, 24readdcld 10662 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 + 1) ∈ ℝ)
2625, 20, 22redivcld 11460 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
2726rexrd 10683 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
28 icossre 12809 . . . . . . . . . . . . . . . . 17 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
2923, 27, 28syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
3012, 29eqsstrd 3953 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ⊆ ℝ)
3130ex 416 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ))
3231rexlimivv 3251 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ)
3311, 32sylbi 220 . . . . . . . . . . . 12 (𝑑 ∈ ran 𝐼𝑑 ⊆ ℝ)
348, 33mprgbir 3121 . . . . . . . . . . 11 ran 𝐼 ⊆ 𝒫 ℝ
3534sseli 3911 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
3635elpwid 4508 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
3734sseli 3911 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
3837elpwid 4508 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
39 xpss12 5535 . . . . . . . . 9 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4036, 38, 39syl2an 598 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4140adantr 484 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
427, 41eqsstrd 3953 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ⊆ (ℝ × ℝ))
4342ex 416 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ)))
4443rexlimivv 3251 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ))
456, 44sylbi 220 . . 3 (𝑑 ∈ ran 𝑅𝑑 ⊆ (ℝ × ℝ))
461, 45mprgbir 3121 . 2 ran 𝑅 ⊆ (ℝ × ℝ)
47 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
48 retop 23377 . . . . . 6 (topGen‘ran (,)) ∈ Top
4947, 48eqeltri 2886 . . . . 5 𝐽 ∈ Top
5049, 49txtopi 22205 . . . 4 (𝐽 ×t 𝐽) ∈ Top
51 uniretop 23378 . . . . . . 7 ℝ = (topGen‘ran (,))
5247unieqi 4814 . . . . . . 7 𝐽 = (topGen‘ran (,))
5351, 52eqtr4i 2824 . . . . . 6 ℝ = 𝐽
5449, 49, 53, 53txunii 22208 . . . . 5 (ℝ × ℝ) = (𝐽 ×t 𝐽)
5554topopn 21521 . . . 4 ((𝐽 ×t 𝐽) ∈ Top → (ℝ × ℝ) ∈ (𝐽 ×t 𝐽))
5647, 9, 2dya2iocuni 31666 . . . 4 ((ℝ × ℝ) ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ))
5750, 55, 56mp2b 10 . . 3 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)
58 simpr 488 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 = (ℝ × ℝ))
59 elpwi 4506 . . . . . . 7 (𝑐 ∈ 𝒫 ran 𝑅𝑐 ⊆ ran 𝑅)
6059adantr 484 . . . . . 6 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ⊆ ran 𝑅)
6160unissd 4811 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ran 𝑅)
6258, 61eqsstrrd 3954 . . . 4 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → (ℝ × ℝ) ⊆ ran 𝑅)
6362rexlimiva 3240 . . 3 (∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ) → (ℝ × ℝ) ⊆ ran 𝑅)
6457, 63ax-mp 5 . 2 (ℝ × ℝ) ⊆ ran 𝑅
6546, 64eqssi 3931 1 ran 𝑅 = (ℝ × ℝ)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ∃wrex 3107   ⊆ wss 3881  𝒫 cpw 4497  ∪ cuni 4801   × cxp 5518  ran crn 5521  ‘cfv 6325  (class class class)co 7136   ∈ cmpo 7138  ℝcr 10528  0cc0 10529  1c1 10530   + caddc 10532  ℝ*cxr 10666   / cdiv 11289  2c2 11683  ℤcz 11972  (,)cioo 12729  [,)cico 12731  ↑cexp 13428  topGenctg 16706  Topctop 21508   ×t ctx 22175 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-inf2 9091  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-iin 4885  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-se 5480  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-isom 6334  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-of 7391  df-om 7564  df-1st 7674  df-2nd 7675  df-supp 7817  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-2o 8089  df-oadd 8092  df-er 8275  df-map 8394  df-pm 8395  df-ixp 8448  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-fsupp 8821  df-fi 8862  df-sup 8893  df-inf 8894  df-oi 8961  df-card 9355  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ioo 12733  df-ioc 12734  df-ico 12735  df-icc 12736  df-fz 12889  df-fzo 13032  df-fl 13160  df-mod 13236  df-seq 13368  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14421  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-limsup 14823  df-clim 14840  df-rlim 14841  df-sum 15038  df-ef 15416  df-sin 15418  df-cos 15419  df-pi 15421  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-starv 16575  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-unif 16583  df-hom 16584  df-cco 16585  df-rest 16691  df-topn 16692  df-0g 16710  df-gsum 16711  df-topgen 16712  df-pt 16713  df-prds 16716  df-xrs 16770  df-qtop 16775  df-imas 16776  df-xps 16778  df-mre 16852  df-mrc 16853  df-acs 16855  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-submnd 17952  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-fbas 20092  df-fg 20093  df-cnfld 20096  df-refld 20299  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-cld 21634  df-ntr 21635  df-cls 21636  df-nei 21713  df-lp 21751  df-perf 21752  df-cn 21842  df-cnp 21843  df-haus 21930  df-cmp 22002  df-tx 22177  df-hmeo 22370  df-fil 22461  df-fm 22553  df-flim 22554  df-flf 22555  df-fcls 22556  df-xms 22937  df-ms 22938  df-tms 22939  df-cncf 23493  df-cfil 23869  df-cmet 23871  df-cms 23949  df-limc 24479  df-dv 24480  df-log 25158  df-cxp 25159  df-logb 25361 This theorem is referenced by:  sxbrsigalem1  31668  sxbrsigalem2  31669  sxbrsigalem5  31671
 Copyright terms: Public domain W3C validator