Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2iocucvr Structured version   Visualization version   GIF version

Theorem dya2iocucvr 32251
Description: The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.)
Hypotheses
Ref Expression
sxbrsiga.0 𝐽 = (topGen‘ran (,))
dya2ioc.1 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
dya2ioc.2 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
Assertion
Ref Expression
dya2iocucvr ran 𝑅 = (ℝ × ℝ)
Distinct variable groups:   𝑥,𝑛   𝑥,𝐼   𝑣,𝑢,𝐼,𝑥   𝑢,𝑛,𝑣
Allowed substitution hints:   𝑅(𝑥,𝑣,𝑢,𝑛)   𝐼(𝑛)   𝐽(𝑥,𝑣,𝑢,𝑛)

Proof of Theorem dya2iocucvr
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unissb 4873 . . 3 ( ran 𝑅 ⊆ (ℝ × ℝ) ↔ ∀𝑑 ∈ ran 𝑅 𝑑 ⊆ (ℝ × ℝ))
2 dya2ioc.2 . . . . 5 𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))
3 vex 3436 . . . . . 6 𝑢 ∈ V
4 vex 3436 . . . . . 6 𝑣 ∈ V
53, 4xpex 7603 . . . . 5 (𝑢 × 𝑣) ∈ V
62, 5elrnmpo 7410 . . . 4 (𝑑 ∈ ran 𝑅 ↔ ∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣))
7 simpr 485 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 = (𝑢 × 𝑣))
8 pwssb 5030 . . . . . . . . . . . 12 (ran 𝐼 ⊆ 𝒫 ℝ ↔ ∀𝑑 ∈ ran 𝐼 𝑑 ⊆ ℝ)
9 dya2ioc.1 . . . . . . . . . . . . . 14 𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
10 ovex 7308 . . . . . . . . . . . . . 14 ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ∈ V
119, 10elrnmpo 7410 . . . . . . . . . . . . 13 (𝑑 ∈ ran 𝐼 ↔ ∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
12 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))
13 simpll 764 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℤ)
1413zred 12426 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑥 ∈ ℝ)
15 2re 12047 . . . . . . . . . . . . . . . . . . . 20 2 ∈ ℝ
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℝ)
17 2ne0 12077 . . . . . . . . . . . . . . . . . . . 20 2 ≠ 0
1817a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ≠ 0)
19 simplr 766 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑛 ∈ ℤ)
2016, 18, 19reexpclzd 13964 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ∈ ℝ)
21 2cnd 12051 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 2 ∈ ℂ)
2221, 18, 19expne0d 13870 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (2↑𝑛) ≠ 0)
2314, 20, 22redivcld 11803 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 / (2↑𝑛)) ∈ ℝ)
24 1red 10976 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 1 ∈ ℝ)
2514, 24readdcld 11004 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → (𝑥 + 1) ∈ ℝ)
2625, 20, 22redivcld 11803 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ)
2726rexrd 11025 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*)
28 icossre 13160 . . . . . . . . . . . . . . . . 17 (((𝑥 / (2↑𝑛)) ∈ ℝ ∧ ((𝑥 + 1) / (2↑𝑛)) ∈ ℝ*) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
2923, 27, 28syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) ⊆ ℝ)
3012, 29eqsstrd 3959 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛)))) → 𝑑 ⊆ ℝ)
3130ex 413 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ))
3231rexlimivv 3221 . . . . . . . . . . . . 13 (∃𝑥 ∈ ℤ ∃𝑛 ∈ ℤ 𝑑 = ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))) → 𝑑 ⊆ ℝ)
3311, 32sylbi 216 . . . . . . . . . . . 12 (𝑑 ∈ ran 𝐼𝑑 ⊆ ℝ)
348, 33mprgbir 3079 . . . . . . . . . . 11 ran 𝐼 ⊆ 𝒫 ℝ
3534sseli 3917 . . . . . . . . . 10 (𝑢 ∈ ran 𝐼𝑢 ∈ 𝒫 ℝ)
3635elpwid 4544 . . . . . . . . 9 (𝑢 ∈ ran 𝐼𝑢 ⊆ ℝ)
3734sseli 3917 . . . . . . . . . 10 (𝑣 ∈ ran 𝐼𝑣 ∈ 𝒫 ℝ)
3837elpwid 4544 . . . . . . . . 9 (𝑣 ∈ ran 𝐼𝑣 ⊆ ℝ)
39 xpss12 5604 . . . . . . . . 9 ((𝑢 ⊆ ℝ ∧ 𝑣 ⊆ ℝ) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4036, 38, 39syl2an 596 . . . . . . . 8 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
4140adantr 481 . . . . . . 7 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → (𝑢 × 𝑣) ⊆ (ℝ × ℝ))
427, 41eqsstrd 3959 . . . . . 6 (((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) ∧ 𝑑 = (𝑢 × 𝑣)) → 𝑑 ⊆ (ℝ × ℝ))
4342ex 413 . . . . 5 ((𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼) → (𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ)))
4443rexlimivv 3221 . . . 4 (∃𝑢 ∈ ran 𝐼𝑣 ∈ ran 𝐼 𝑑 = (𝑢 × 𝑣) → 𝑑 ⊆ (ℝ × ℝ))
456, 44sylbi 216 . . 3 (𝑑 ∈ ran 𝑅𝑑 ⊆ (ℝ × ℝ))
461, 45mprgbir 3079 . 2 ran 𝑅 ⊆ (ℝ × ℝ)
47 sxbrsiga.0 . . . . . 6 𝐽 = (topGen‘ran (,))
48 retop 23925 . . . . . 6 (topGen‘ran (,)) ∈ Top
4947, 48eqeltri 2835 . . . . 5 𝐽 ∈ Top
5049, 49txtopi 22741 . . . 4 (𝐽 ×t 𝐽) ∈ Top
51 uniretop 23926 . . . . . . 7 ℝ = (topGen‘ran (,))
5247unieqi 4852 . . . . . . 7 𝐽 = (topGen‘ran (,))
5351, 52eqtr4i 2769 . . . . . 6 ℝ = 𝐽
5449, 49, 53, 53txunii 22744 . . . . 5 (ℝ × ℝ) = (𝐽 ×t 𝐽)
5554topopn 22055 . . . 4 ((𝐽 ×t 𝐽) ∈ Top → (ℝ × ℝ) ∈ (𝐽 ×t 𝐽))
5647, 9, 2dya2iocuni 32250 . . . 4 ((ℝ × ℝ) ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ))
5750, 55, 56mp2b 10 . . 3 𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)
58 simpr 485 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 = (ℝ × ℝ))
59 elpwi 4542 . . . . . . 7 (𝑐 ∈ 𝒫 ran 𝑅𝑐 ⊆ ran 𝑅)
6059adantr 481 . . . . . 6 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ⊆ ran 𝑅)
6160unissd 4849 . . . . 5 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → 𝑐 ran 𝑅)
6258, 61eqsstrrd 3960 . . . 4 ((𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ)) → (ℝ × ℝ) ⊆ ran 𝑅)
6362rexlimiva 3210 . . 3 (∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = (ℝ × ℝ) → (ℝ × ℝ) ⊆ ran 𝑅)
6457, 63ax-mp 5 . 2 (ℝ × ℝ) ⊆ ran 𝑅
6546, 64eqssi 3937 1 ran 𝑅 = (ℝ × ℝ)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  wss 3887  𝒫 cpw 4533   cuni 4839   × cxp 5587  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   / cdiv 11632  2c2 12028  cz 12319  (,)cioo 13079  [,)cico 13081  cexp 13782  topGenctg 17148  Topctop 22042   ×t ctx 22711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-refld 20810  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-fcls 23092  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-cfil 24419  df-cmet 24421  df-cms 24499  df-limc 25030  df-dv 25031  df-log 25712  df-cxp 25713  df-logb 25915
This theorem is referenced by:  sxbrsigalem1  32252  sxbrsigalem2  32253  sxbrsigalem5  32255
  Copyright terms: Public domain W3C validator