Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndmbfm Structured version   Visualization version   GIF version

Theorem 2ndmbfm 34263
Description: The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1 (𝜑𝑆 ran sigAlgebra)
1stmbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
2ndmbfm (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))

Proof of Theorem 2ndmbfm
Dummy variables 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 8039 . . . 4 (2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇
2 1stmbfm.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
3 1stmbfm.2 . . . . . 6 (𝜑𝑇 ran sigAlgebra)
4 sxuni 34194 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
52, 3, 4syl2anc 584 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
65feq2d 6722 . . . 4 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇 ↔ (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇))
71, 6mpbii 233 . . 3 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇)
8 unielsiga 34129 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
93, 8syl 17 . . . 4 (𝜑 𝑇𝑇)
10 sxsiga 34192 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
112, 3, 10syl2anc 584 . . . . 5 (𝜑 → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
12 unielsiga 34129 . . . . 5 ((𝑆 ×s 𝑇) ∈ ran sigAlgebra → (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
1311, 12syl 17 . . . 4 (𝜑 (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
149, 13elmapd 8880 . . 3 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇m (𝑆 ×s 𝑇)) ↔ (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇))
157, 14mpbird 257 . 2 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇m (𝑆 ×s 𝑇)))
16 ffn 6736 . . . . . . . 8 ((2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇 → (2nd ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇))
17 elpreima 7078 . . . . . . . 8 ((2nd ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇) → (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎)))
181, 16, 17mp2b 10 . . . . . . 7 (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎))
19 fvres 6925 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) = (2nd𝑧))
2019eleq1d 2826 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎 ↔ (2nd𝑧) ∈ 𝑎))
21 1st2nd2 8053 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
22 xp1st 8046 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → (1st𝑧) ∈ 𝑆)
23 elxp6 8048 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑎)))
24 anass 468 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) ∧ (2nd𝑧) ∈ 𝑎) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑎)))
2523, 24bitr4i 278 . . . . . . . . . . 11 (𝑧 ∈ ( 𝑆 × 𝑎) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) ∧ (2nd𝑧) ∈ 𝑎))
2625baib 535 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (2nd𝑧) ∈ 𝑎))
2721, 22, 26syl2anc 584 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (2nd𝑧) ∈ 𝑎))
2820, 27bitr4d 282 . . . . . . . 8 (𝑧 ∈ ( 𝑆 × 𝑇) → (((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎𝑧 ∈ ( 𝑆 × 𝑎)))
2928pm5.32i 574 . . . . . . 7 ((𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎)))
3018, 29bitri 275 . . . . . 6 (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎)))
31 sgon 34125 . . . . . . . . . . 11 (𝑇 ran sigAlgebra → 𝑇 ∈ (sigAlgebra‘ 𝑇))
32 sigasspw 34117 . . . . . . . . . . 11 (𝑇 ∈ (sigAlgebra‘ 𝑇) → 𝑇 ⊆ 𝒫 𝑇)
33 pwssb 5101 . . . . . . . . . . . 12 (𝑇 ⊆ 𝒫 𝑇 ↔ ∀𝑎𝑇 𝑎 𝑇)
3433biimpi 216 . . . . . . . . . . 11 (𝑇 ⊆ 𝒫 𝑇 → ∀𝑎𝑇 𝑎 𝑇)
353, 31, 32, 344syl 19 . . . . . . . . . 10 (𝜑 → ∀𝑎𝑇 𝑎 𝑇)
3635r19.21bi 3251 . . . . . . . . 9 ((𝜑𝑎𝑇) → 𝑎 𝑇)
37 xpss2 5705 . . . . . . . . 9 (𝑎 𝑇 → ( 𝑆 × 𝑎) ⊆ ( 𝑆 × 𝑇))
3836, 37syl 17 . . . . . . . 8 ((𝜑𝑎𝑇) → ( 𝑆 × 𝑎) ⊆ ( 𝑆 × 𝑇))
3938sseld 3982 . . . . . . 7 ((𝜑𝑎𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) → 𝑧 ∈ ( 𝑆 × 𝑇)))
4039pm4.71rd 562 . . . . . 6 ((𝜑𝑎𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎))))
4130, 40bitr4id 290 . . . . 5 ((𝜑𝑎𝑇) → (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ 𝑧 ∈ ( 𝑆 × 𝑎)))
4241eqrdv 2735 . . . 4 ((𝜑𝑎𝑇) → ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) = ( 𝑆 × 𝑎))
432adantr 480 . . . . 5 ((𝜑𝑎𝑇) → 𝑆 ran sigAlgebra)
443adantr 480 . . . . 5 ((𝜑𝑎𝑇) → 𝑇 ran sigAlgebra)
45 eqid 2737 . . . . . . . 8 𝑆 = 𝑆
46 issgon 34124 . . . . . . . 8 (𝑆 ∈ (sigAlgebra‘ 𝑆) ↔ (𝑆 ran sigAlgebra ∧ 𝑆 = 𝑆))
472, 45, 46sylanblrc 590 . . . . . . 7 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑆))
48 baselsiga 34116 . . . . . . 7 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
4947, 48syl 17 . . . . . 6 (𝜑 𝑆𝑆)
5049adantr 480 . . . . 5 ((𝜑𝑎𝑇) → 𝑆𝑆)
51 simpr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝑎𝑇)
52 elsx 34195 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) ∧ ( 𝑆𝑆𝑎𝑇)) → ( 𝑆 × 𝑎) ∈ (𝑆 ×s 𝑇))
5343, 44, 50, 51, 52syl22anc 839 . . . 4 ((𝜑𝑎𝑇) → ( 𝑆 × 𝑎) ∈ (𝑆 ×s 𝑇))
5442, 53eqeltrd 2841 . . 3 ((𝜑𝑎𝑇) → ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5554ralrimiva 3146 . 2 (𝜑 → ∀𝑎𝑇 ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5611, 3ismbfm 34252 . 2 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇) ↔ ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇m (𝑆 ×s 𝑇)) ∧ ∀𝑎𝑇 ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))))
5715, 55, 56mpbir2and 713 1 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wss 3951  𝒫 cpw 4600  cop 4632   cuni 4907   × cxp 5683  ccnv 5684  ran crn 5686  cres 5687  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  m cmap 8866  sigAlgebracsiga 34109   ×s csx 34189  MblFnMcmbfm 34250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-siga 34110  df-sigagen 34140  df-sx 34190  df-mbfm 34251
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator