Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2ndmbfm Structured version   Visualization version   GIF version

Theorem 2ndmbfm 31629
Description: The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
1stmbfm.1 (𝜑𝑆 ran sigAlgebra)
1stmbfm.2 (𝜑𝑇 ran sigAlgebra)
Assertion
Ref Expression
2ndmbfm (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))

Proof of Theorem 2ndmbfm
Dummy variables 𝑧 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 7696 . . . 4 (2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇
2 1stmbfm.1 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
3 1stmbfm.2 . . . . . 6 (𝜑𝑇 ran sigAlgebra)
4 sxuni 31562 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
52, 3, 4syl2anc 587 . . . . 5 (𝜑 → ( 𝑆 × 𝑇) = (𝑆 ×s 𝑇))
65feq2d 6473 . . . 4 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇 ↔ (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇))
71, 6mpbii 236 . . 3 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇)
8 unielsiga 31497 . . . . 5 (𝑇 ran sigAlgebra → 𝑇𝑇)
93, 8syl 17 . . . 4 (𝜑 𝑇𝑇)
10 sxsiga 31560 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
112, 3, 10syl2anc 587 . . . . 5 (𝜑 → (𝑆 ×s 𝑇) ∈ ran sigAlgebra)
12 unielsiga 31497 . . . . 5 ((𝑆 ×s 𝑇) ∈ ran sigAlgebra → (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
1311, 12syl 17 . . . 4 (𝜑 (𝑆 ×s 𝑇) ∈ (𝑆 ×s 𝑇))
149, 13elmapd 8403 . . 3 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇m (𝑆 ×s 𝑇)) ↔ (2nd ↾ ( 𝑆 × 𝑇)): (𝑆 ×s 𝑇)⟶ 𝑇))
157, 14mpbird 260 . 2 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇m (𝑆 ×s 𝑇)))
16 ffn 6487 . . . . . . . 8 ((2nd ↾ ( 𝑆 × 𝑇)):( 𝑆 × 𝑇)⟶ 𝑇 → (2nd ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇))
17 elpreima 6805 . . . . . . . 8 ((2nd ↾ ( 𝑆 × 𝑇)) Fn ( 𝑆 × 𝑇) → (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎)))
181, 16, 17mp2b 10 . . . . . . 7 (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎))
19 fvres 6664 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) = (2nd𝑧))
2019eleq1d 2874 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎 ↔ (2nd𝑧) ∈ 𝑎))
21 1st2nd2 7710 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
22 xp1st 7703 . . . . . . . . . 10 (𝑧 ∈ ( 𝑆 × 𝑇) → (1st𝑧) ∈ 𝑆)
23 elxp6 7705 . . . . . . . . . . . 12 (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑎)))
24 anass 472 . . . . . . . . . . . 12 (((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) ∧ (2nd𝑧) ∈ 𝑎) ↔ (𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ ((1st𝑧) ∈ 𝑆 ∧ (2nd𝑧) ∈ 𝑎)))
2523, 24bitr4i 281 . . . . . . . . . . 11 (𝑧 ∈ ( 𝑆 × 𝑎) ↔ ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) ∧ (2nd𝑧) ∈ 𝑎))
2625baib 539 . . . . . . . . . 10 ((𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩ ∧ (1st𝑧) ∈ 𝑆) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (2nd𝑧) ∈ 𝑎))
2721, 22, 26syl2anc 587 . . . . . . . . 9 (𝑧 ∈ ( 𝑆 × 𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (2nd𝑧) ∈ 𝑎))
2820, 27bitr4d 285 . . . . . . . 8 (𝑧 ∈ ( 𝑆 × 𝑇) → (((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎𝑧 ∈ ( 𝑆 × 𝑎)))
2928pm5.32i 578 . . . . . . 7 ((𝑧 ∈ ( 𝑆 × 𝑇) ∧ ((2nd ↾ ( 𝑆 × 𝑇))‘𝑧) ∈ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎)))
3018, 29bitri 278 . . . . . 6 (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎)))
31 sgon 31493 . . . . . . . . . . 11 (𝑇 ran sigAlgebra → 𝑇 ∈ (sigAlgebra‘ 𝑇))
32 sigasspw 31485 . . . . . . . . . . 11 (𝑇 ∈ (sigAlgebra‘ 𝑇) → 𝑇 ⊆ 𝒫 𝑇)
33 pwssb 4986 . . . . . . . . . . . 12 (𝑇 ⊆ 𝒫 𝑇 ↔ ∀𝑎𝑇 𝑎 𝑇)
3433biimpi 219 . . . . . . . . . . 11 (𝑇 ⊆ 𝒫 𝑇 → ∀𝑎𝑇 𝑎 𝑇)
353, 31, 32, 344syl 19 . . . . . . . . . 10 (𝜑 → ∀𝑎𝑇 𝑎 𝑇)
3635r19.21bi 3173 . . . . . . . . 9 ((𝜑𝑎𝑇) → 𝑎 𝑇)
37 xpss2 5539 . . . . . . . . 9 (𝑎 𝑇 → ( 𝑆 × 𝑎) ⊆ ( 𝑆 × 𝑇))
3836, 37syl 17 . . . . . . . 8 ((𝜑𝑎𝑇) → ( 𝑆 × 𝑎) ⊆ ( 𝑆 × 𝑇))
3938sseld 3914 . . . . . . 7 ((𝜑𝑎𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) → 𝑧 ∈ ( 𝑆 × 𝑇)))
4039pm4.71rd 566 . . . . . 6 ((𝜑𝑎𝑇) → (𝑧 ∈ ( 𝑆 × 𝑎) ↔ (𝑧 ∈ ( 𝑆 × 𝑇) ∧ 𝑧 ∈ ( 𝑆 × 𝑎))))
4130, 40bitr4id 293 . . . . 5 ((𝜑𝑎𝑇) → (𝑧 ∈ ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ↔ 𝑧 ∈ ( 𝑆 × 𝑎)))
4241eqrdv 2796 . . . 4 ((𝜑𝑎𝑇) → ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) = ( 𝑆 × 𝑎))
432adantr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝑆 ran sigAlgebra)
443adantr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝑇 ran sigAlgebra)
45 eqid 2798 . . . . . . . 8 𝑆 = 𝑆
46 issgon 31492 . . . . . . . 8 (𝑆 ∈ (sigAlgebra‘ 𝑆) ↔ (𝑆 ran sigAlgebra ∧ 𝑆 = 𝑆))
472, 45, 46sylanblrc 593 . . . . . . 7 (𝜑𝑆 ∈ (sigAlgebra‘ 𝑆))
48 baselsiga 31484 . . . . . . 7 (𝑆 ∈ (sigAlgebra‘ 𝑆) → 𝑆𝑆)
4947, 48syl 17 . . . . . 6 (𝜑 𝑆𝑆)
5049adantr 484 . . . . 5 ((𝜑𝑎𝑇) → 𝑆𝑆)
51 simpr 488 . . . . 5 ((𝜑𝑎𝑇) → 𝑎𝑇)
52 elsx 31563 . . . . 5 (((𝑆 ran sigAlgebra ∧ 𝑇 ran sigAlgebra) ∧ ( 𝑆𝑆𝑎𝑇)) → ( 𝑆 × 𝑎) ∈ (𝑆 ×s 𝑇))
5343, 44, 50, 51, 52syl22anc 837 . . . 4 ((𝜑𝑎𝑇) → ( 𝑆 × 𝑎) ∈ (𝑆 ×s 𝑇))
5442, 53eqeltrd 2890 . . 3 ((𝜑𝑎𝑇) → ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5554ralrimiva 3149 . 2 (𝜑 → ∀𝑎𝑇 ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))
5611, 3ismbfm 31620 . 2 (𝜑 → ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇) ↔ ((2nd ↾ ( 𝑆 × 𝑇)) ∈ ( 𝑇m (𝑆 ×s 𝑇)) ∧ ∀𝑎𝑇 ((2nd ↾ ( 𝑆 × 𝑇)) “ 𝑎) ∈ (𝑆 ×s 𝑇))))
5715, 55, 56mpbir2and 712 1 (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wss 3881  𝒫 cpw 4497  cop 4531   cuni 4800   × cxp 5517  ccnv 5518  ran crn 5520  cres 5521  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  m cmap 8389  sigAlgebracsiga 31477   ×s csx 31557  MblFnMcmbfm 31618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-siga 31478  df-sigagen 31508  df-sx 31558  df-mbfm 31619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator