Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsspwdm Structured version   Visualization version   GIF version

Theorem preimafvsspwdm 47314
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
preimafvsspwdm (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem preimafvsspwdm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvssdm 47311 . . 3 ((𝐹 Fn 𝐴𝑠𝑃) → 𝑠𝐴)
32ralrimiva 3144 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃 𝑠𝐴)
4 pwssb 5106 . 2 (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠𝑃 𝑠𝐴)
53, 4sylibr 234 1 (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  {cab 2712  wral 3059  wrex 3068  wss 3963  𝒫 cpw 4605  {csn 4631  ccnv 5688  cima 5692   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fn 6566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator