Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvsspwdm | Structured version Visualization version GIF version |
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
preimafvsspwdm | ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafvssdm 44726 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃) → 𝑠 ⊆ 𝐴) |
3 | 2 | ralrimiva 3107 | . 2 ⊢ (𝐹 Fn 𝐴 → ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) |
4 | pwssb 5026 | . 2 ⊢ (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ◡ccnv 5579 “ cima 5583 Fn wfn 6413 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-fn 6421 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |