![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvsspwdm | Structured version Visualization version GIF version |
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
preimafvsspwdm | ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafvssdm 47260 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃) → 𝑠 ⊆ 𝐴) |
3 | 2 | ralrimiva 3152 | . 2 ⊢ (𝐹 Fn 𝐴 → ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) |
4 | pwssb 5124 | . 2 ⊢ (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 𝒫 cpw 4622 {csn 4648 ◡ccnv 5699 “ cima 5703 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fn 6576 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |