![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvsspwdm | Structured version Visualization version GIF version |
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
Ref | Expression |
---|---|
setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
Ref | Expression |
---|---|
preimafvsspwdm | ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
2 | 1 | elsetpreimafvssdm 46352 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃) → 𝑠 ⊆ 𝐴) |
3 | 2 | ralrimiva 3144 | . 2 ⊢ (𝐹 Fn 𝐴 → ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) |
4 | pwssb 5103 | . 2 ⊢ (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2707 ∀wral 3059 ∃wrex 3068 ⊆ wss 3947 𝒫 cpw 4601 {csn 4627 ◡ccnv 5674 “ cima 5678 Fn wfn 6537 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fn 6545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |