Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsspwdm Structured version   Visualization version   GIF version

Theorem preimafvsspwdm 46355
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
preimafvsspwdm (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem preimafvsspwdm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvssdm 46352 . . 3 ((𝐹 Fn 𝐴𝑠𝑃) → 𝑠𝐴)
32ralrimiva 3144 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃 𝑠𝐴)
4 pwssb 5103 . 2 (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠𝑃 𝑠𝐴)
53, 4sylibr 233 1 (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  {cab 2707  wral 3059  wrex 3068  wss 3947  𝒫 cpw 4601  {csn 4627  ccnv 5674  cima 5678   Fn wfn 6537  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fn 6545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator