Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsspwdm Structured version   Visualization version   GIF version

Theorem preimafvsspwdm 47494
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
preimafvsspwdm (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem preimafvsspwdm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvssdm 47491 . . 3 ((𝐹 Fn 𝐴𝑠𝑃) → 𝑠𝐴)
32ralrimiva 3124 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃 𝑠𝐴)
4 pwssb 5051 . 2 (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠𝑃 𝑠𝐴)
53, 4sylibr 234 1 (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  {cab 2709  wral 3047  wrex 3056  wss 3897  𝒫 cpw 4549  {csn 4575  ccnv 5618  cima 5622   Fn wfn 6482  cfv 6487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fn 6490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator