| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > preimafvsspwdm | Structured version Visualization version GIF version | ||
| Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.) |
| Ref | Expression |
|---|---|
| setpreimafvex.p | ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} |
| Ref | Expression |
|---|---|
| preimafvsspwdm | ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setpreimafvex.p | . . . 4 ⊢ 𝑃 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = (◡𝐹 “ {(𝐹‘𝑥)})} | |
| 2 | 1 | elsetpreimafvssdm 47387 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑠 ∈ 𝑃) → 𝑠 ⊆ 𝐴) |
| 3 | 2 | ralrimiva 3125 | . 2 ⊢ (𝐹 Fn 𝐴 → ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) |
| 4 | pwssb 5065 | . 2 ⊢ (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠 ∈ 𝑃 𝑠 ⊆ 𝐴) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐹 Fn 𝐴 → 𝑃 ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2707 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ◡ccnv 5637 “ cima 5641 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fn 6514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |