Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  preimafvsspwdm Structured version   Visualization version   GIF version

Theorem preimafvsspwdm 47390
Description: The class 𝑃 of all preimages of function values is a subset of the power set of the domain of the function. (Contributed by AV, 5-Mar-2024.)
Hypothesis
Ref Expression
setpreimafvex.p 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
Assertion
Ref Expression
preimafvsspwdm (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Distinct variable groups:   𝑥,𝐴,𝑧   𝑥,𝐹,𝑧   𝑥,𝑃
Allowed substitution hint:   𝑃(𝑧)

Proof of Theorem preimafvsspwdm
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 setpreimafvex.p . . . 4 𝑃 = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝐹 “ {(𝐹𝑥)})}
21elsetpreimafvssdm 47387 . . 3 ((𝐹 Fn 𝐴𝑠𝑃) → 𝑠𝐴)
32ralrimiva 3125 . 2 (𝐹 Fn 𝐴 → ∀𝑠𝑃 𝑠𝐴)
4 pwssb 5065 . 2 (𝑃 ⊆ 𝒫 𝐴 ↔ ∀𝑠𝑃 𝑠𝐴)
53, 4sylibr 234 1 (𝐹 Fn 𝐴𝑃 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  {cab 2707  wral 3044  wrex 3053  wss 3914  𝒫 cpw 4563  {csn 4589  ccnv 5637  cima 5641   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fn 6514
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator