Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmvlsiga Structured version   Visualization version   GIF version

Theorem dmvlsiga 33789
Description: Lebesgue-measurable subsets of form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
dmvlsiga dom vol ∈ (sigAlgebra‘ℝ)

Proof of Theorem dmvlsiga
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssb 5108 . . 3 (dom vol ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ dom vol𝑥 ⊆ ℝ)
2 mblss 25488 . . 3 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
31, 2mprgbir 3065 . 2 dom vol ⊆ 𝒫 ℝ
4 rembl 25497 . . 3 ℝ ∈ dom vol
5 cmmbl 25491 . . . 4 (𝑥 ∈ dom vol → (ℝ ∖ 𝑥) ∈ dom vol)
65rgen 3060 . . 3 𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol
7 nnenom 13987 . . . . . . . . 9 ℕ ≈ ω
87ensymi 9033 . . . . . . . 8 ω ≈ ℕ
9 domentr 9042 . . . . . . . 8 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
108, 9mpan2 689 . . . . . . 7 (𝑥 ≼ ω → 𝑥 ≼ ℕ)
11 elpwi 4613 . . . . . . . 8 (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol)
12 dfss3 3970 . . . . . . . 8 (𝑥 ⊆ dom vol ↔ ∀𝑦𝑥 𝑦 ∈ dom vol)
1311, 12sylib 217 . . . . . . 7 (𝑥 ∈ 𝒫 dom vol → ∀𝑦𝑥 𝑦 ∈ dom vol)
14 iunmbl2 25514 . . . . . . 7 ((𝑥 ≼ ℕ ∧ ∀𝑦𝑥 𝑦 ∈ dom vol) → 𝑦𝑥 𝑦 ∈ dom vol)
1510, 13, 14syl2anr 595 . . . . . 6 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω) → 𝑦𝑥 𝑦 ∈ dom vol)
1615ex 411 . . . . 5 (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → 𝑦𝑥 𝑦 ∈ dom vol))
17 uniiun 5065 . . . . . 6 𝑥 = 𝑦𝑥 𝑦
1817eleq1i 2820 . . . . 5 ( 𝑥 ∈ dom vol ↔ 𝑦𝑥 𝑦 ∈ dom vol)
1916, 18imbitrrdi 251 . . . 4 (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → 𝑥 ∈ dom vol))
2019rgen 3060 . . 3 𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol)
214, 6, 203pm3.2i 1336 . 2 (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol))
22 reex 11239 . . . . 5 ℝ ∈ V
2322pwex 5384 . . . 4 𝒫 ℝ ∈ V
2423, 3ssexi 5326 . . 3 dom vol ∈ V
25 issiga 33772 . . 3 (dom vol ∈ V → (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol)))))
2624, 25ax-mp 5 . 2 (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol))))
273, 21, 26mpbir2an 709 1 dom vol ∈ (sigAlgebra‘ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084  wcel 2098  wral 3058  Vcvv 3473  cdif 3946  wss 3949  𝒫 cpw 4606   cuni 4912   ciun 5000   class class class wbr 5152  dom cdm 5682  cfv 6553  ωcom 7878  cen 8969  cdom 8970  cr 11147  cn 12252  volcvol 25420  sigAlgebracsiga 33768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-inf2 9674  ax-cc 10468  ax-cnex 11204  ax-resscn 11205  ax-1cn 11206  ax-icn 11207  ax-addcl 11208  ax-addrcl 11209  ax-mulcl 11210  ax-mulrcl 11211  ax-mulcom 11212  ax-addass 11213  ax-mulass 11214  ax-distr 11215  ax-i2m1 11216  ax-1ne0 11217  ax-1rid 11218  ax-rnegex 11219  ax-rrecex 11220  ax-cnre 11221  ax-pre-lttri 11222  ax-pre-lttrn 11223  ax-pre-ltadd 11224  ax-pre-mulgt0 11225  ax-pre-sup 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7692  df-om 7879  df-1st 8001  df-2nd 8002  df-frecs 8295  df-wrecs 8326  df-recs 8400  df-rdg 8439  df-1o 8495  df-2o 8496  df-er 8733  df-map 8855  df-pm 8856  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-sup 9475  df-inf 9476  df-oi 9543  df-dju 9934  df-card 9972  df-pnf 11290  df-mnf 11291  df-xr 11292  df-ltxr 11293  df-le 11294  df-sub 11486  df-neg 11487  df-div 11912  df-nn 12253  df-2 12315  df-3 12316  df-n0 12513  df-z 12599  df-uz 12863  df-q 12973  df-rp 13017  df-xadd 13135  df-ioo 13370  df-ico 13372  df-icc 13373  df-fz 13527  df-fzo 13670  df-fl 13799  df-seq 14009  df-exp 14069  df-hash 14332  df-cj 15088  df-re 15089  df-im 15090  df-sqrt 15224  df-abs 15225  df-clim 15474  df-rlim 15475  df-sum 15675  df-xmet 21286  df-met 21287  df-ovol 25421  df-vol 25422  df-siga 33769
This theorem is referenced by:  volmeas  33891  mbfmvolf  33927  elmbfmvol2  33928
  Copyright terms: Public domain W3C validator