![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dmvlsiga | Structured version Visualization version GIF version |
Description: Lebesgue-measurable subsets of ℝ form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
Ref | Expression |
---|---|
dmvlsiga | ⊢ dom vol ∈ (sigAlgebra‘ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssb 5124 | . . 3 ⊢ (dom vol ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ dom vol𝑥 ⊆ ℝ) | |
2 | mblss 25585 | . . 3 ⊢ (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ) | |
3 | 1, 2 | mprgbir 3074 | . 2 ⊢ dom vol ⊆ 𝒫 ℝ |
4 | rembl 25594 | . . 3 ⊢ ℝ ∈ dom vol | |
5 | cmmbl 25588 | . . . 4 ⊢ (𝑥 ∈ dom vol → (ℝ ∖ 𝑥) ∈ dom vol) | |
6 | 5 | rgen 3069 | . . 3 ⊢ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol |
7 | nnenom 14031 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
8 | 7 | ensymi 9064 | . . . . . . . 8 ⊢ ω ≈ ℕ |
9 | domentr 9073 | . . . . . . . 8 ⊢ ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ) | |
10 | 8, 9 | mpan2 690 | . . . . . . 7 ⊢ (𝑥 ≼ ω → 𝑥 ≼ ℕ) |
11 | elpwi 4629 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol) | |
12 | dfss3 3997 | . . . . . . . 8 ⊢ (𝑥 ⊆ dom vol ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) | |
13 | 11, 12 | sylib 218 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 dom vol → ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
14 | iunmbl2 25611 | . . . . . . 7 ⊢ ((𝑥 ≼ ℕ ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) | |
15 | 10, 13, 14 | syl2anr 596 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
16 | 15 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol)) |
17 | uniiun 5081 | . . . . . 6 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
18 | 17 | eleq1i 2835 | . . . . 5 ⊢ (∪ 𝑥 ∈ dom vol ↔ ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
19 | 16, 18 | imbitrrdi 252 | . . . 4 ⊢ (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)) |
20 | 19 | rgen 3069 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol) |
21 | 4, 6, 20 | 3pm3.2i 1339 | . 2 ⊢ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)) |
22 | reex 11275 | . . . . 5 ⊢ ℝ ∈ V | |
23 | 22 | pwex 5398 | . . . 4 ⊢ 𝒫 ℝ ∈ V |
24 | 23, 3 | ssexi 5340 | . . 3 ⊢ dom vol ∈ V |
25 | issiga 34076 | . . 3 ⊢ (dom vol ∈ V → (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol))))) | |
26 | 24, 25 | ax-mp 5 | . 2 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)))) |
27 | 3, 21, 26 | mpbir2an 710 | 1 ⊢ dom vol ∈ (sigAlgebra‘ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 ∪ ciun 5015 class class class wbr 5166 dom cdm 5700 ‘cfv 6573 ωcom 7903 ≈ cen 9000 ≼ cdom 9001 ℝcr 11183 ℕcn 12293 volcvol 25517 sigAlgebracsiga 34072 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-xadd 13176 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-fl 13843 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-rlim 15535 df-sum 15735 df-xmet 21380 df-met 21381 df-ovol 25518 df-vol 25519 df-siga 34073 |
This theorem is referenced by: volmeas 34195 mbfmvolf 34231 elmbfmvol2 34232 |
Copyright terms: Public domain | W3C validator |