| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmvlsiga | Structured version Visualization version GIF version | ||
| Description: Lebesgue-measurable subsets of ℝ form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
| Ref | Expression |
|---|---|
| dmvlsiga | ⊢ dom vol ∈ (sigAlgebra‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssb 5050 | . . 3 ⊢ (dom vol ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ dom vol𝑥 ⊆ ℝ) | |
| 2 | mblss 25430 | . . 3 ⊢ (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ) | |
| 3 | 1, 2 | mprgbir 3051 | . 2 ⊢ dom vol ⊆ 𝒫 ℝ |
| 4 | rembl 25439 | . . 3 ⊢ ℝ ∈ dom vol | |
| 5 | cmmbl 25433 | . . . 4 ⊢ (𝑥 ∈ dom vol → (ℝ ∖ 𝑥) ∈ dom vol) | |
| 6 | 5 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol |
| 7 | nnenom 13887 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
| 8 | 7 | ensymi 8929 | . . . . . . . 8 ⊢ ω ≈ ℕ |
| 9 | domentr 8938 | . . . . . . . 8 ⊢ ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ) | |
| 10 | 8, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑥 ≼ ω → 𝑥 ≼ ℕ) |
| 11 | elpwi 4558 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol) | |
| 12 | dfss3 3924 | . . . . . . . 8 ⊢ (𝑥 ⊆ dom vol ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) | |
| 13 | 11, 12 | sylib 218 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 dom vol → ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
| 14 | iunmbl2 25456 | . . . . . . 7 ⊢ ((𝑥 ≼ ℕ ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) | |
| 15 | 10, 13, 14 | syl2anr 597 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol)) |
| 17 | uniiun 5007 | . . . . . 6 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 18 | 17 | eleq1i 2819 | . . . . 5 ⊢ (∪ 𝑥 ∈ dom vol ↔ ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
| 19 | 16, 18 | imbitrrdi 252 | . . . 4 ⊢ (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)) |
| 20 | 19 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol) |
| 21 | 4, 6, 20 | 3pm3.2i 1340 | . 2 ⊢ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)) |
| 22 | reex 11100 | . . . . 5 ⊢ ℝ ∈ V | |
| 23 | 22 | pwex 5319 | . . . 4 ⊢ 𝒫 ℝ ∈ V |
| 24 | 23, 3 | ssexi 5261 | . . 3 ⊢ dom vol ∈ V |
| 25 | issiga 34079 | . . 3 ⊢ (dom vol ∈ V → (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol))))) | |
| 26 | 24, 25 | ax-mp 5 | . 2 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)))) |
| 27 | 3, 21, 26 | mpbir2an 711 | 1 ⊢ dom vol ∈ (sigAlgebra‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 ∪ ciun 4941 class class class wbr 5092 dom cdm 5619 ‘cfv 6482 ωcom 7799 ≈ cen 8869 ≼ cdom 8870 ℝcr 11008 ℕcn 12128 volcvol 25362 sigAlgebracsiga 34075 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cc 10329 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-disj 5060 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-xadd 13015 df-ioo 13252 df-ico 13254 df-icc 13255 df-fz 13411 df-fzo 13558 df-fl 13696 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-sum 15594 df-xmet 21254 df-met 21255 df-ovol 25363 df-vol 25364 df-siga 34076 |
| This theorem is referenced by: volmeas 34198 mbfmvolf 34234 elmbfmvol2 34235 |
| Copyright terms: Public domain | W3C validator |