Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmvlsiga Structured version   Visualization version   GIF version

Theorem dmvlsiga 32768
Description: Lebesgue-measurable subsets of form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.)
Assertion
Ref Expression
dmvlsiga dom vol ∈ (sigAlgebra‘ℝ)

Proof of Theorem dmvlsiga
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssb 5066 . . 3 (dom vol ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ dom vol𝑥 ⊆ ℝ)
2 mblss 24911 . . 3 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
31, 2mprgbir 3072 . 2 dom vol ⊆ 𝒫 ℝ
4 rembl 24920 . . 3 ℝ ∈ dom vol
5 cmmbl 24914 . . . 4 (𝑥 ∈ dom vol → (ℝ ∖ 𝑥) ∈ dom vol)
65rgen 3067 . . 3 𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol
7 nnenom 13892 . . . . . . . . 9 ℕ ≈ ω
87ensymi 8951 . . . . . . . 8 ω ≈ ℕ
9 domentr 8960 . . . . . . . 8 ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ)
108, 9mpan2 690 . . . . . . 7 (𝑥 ≼ ω → 𝑥 ≼ ℕ)
11 elpwi 4572 . . . . . . . 8 (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol)
12 dfss3 3937 . . . . . . . 8 (𝑥 ⊆ dom vol ↔ ∀𝑦𝑥 𝑦 ∈ dom vol)
1311, 12sylib 217 . . . . . . 7 (𝑥 ∈ 𝒫 dom vol → ∀𝑦𝑥 𝑦 ∈ dom vol)
14 iunmbl2 24937 . . . . . . 7 ((𝑥 ≼ ℕ ∧ ∀𝑦𝑥 𝑦 ∈ dom vol) → 𝑦𝑥 𝑦 ∈ dom vol)
1510, 13, 14syl2anr 598 . . . . . 6 ((𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω) → 𝑦𝑥 𝑦 ∈ dom vol)
1615ex 414 . . . . 5 (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → 𝑦𝑥 𝑦 ∈ dom vol))
17 uniiun 5023 . . . . . 6 𝑥 = 𝑦𝑥 𝑦
1817eleq1i 2829 . . . . 5 ( 𝑥 ∈ dom vol ↔ 𝑦𝑥 𝑦 ∈ dom vol)
1916, 18syl6ibr 252 . . . 4 (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → 𝑥 ∈ dom vol))
2019rgen 3067 . . 3 𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol)
214, 6, 203pm3.2i 1340 . 2 (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol))
22 reex 11149 . . . . 5 ℝ ∈ V
2322pwex 5340 . . . 4 𝒫 ℝ ∈ V
2423, 3ssexi 5284 . . 3 dom vol ∈ V
25 issiga 32751 . . 3 (dom vol ∈ V → (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol)))))
2624, 25ax-mp 5 . 2 (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → 𝑥 ∈ dom vol))))
273, 21, 26mpbir2an 710 1 dom vol ∈ (sigAlgebra‘ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107  wral 3065  Vcvv 3448  cdif 3912  wss 3915  𝒫 cpw 4565   cuni 4870   ciun 4959   class class class wbr 5110  dom cdm 5638  cfv 6501  ωcom 7807  cen 8887  cdom 8888  cr 11057  cn 12160  volcvol 24843  sigAlgebracsiga 32747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9584  ax-cc 10378  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-disj 5076  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-2o 8418  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-oi 9453  df-dju 9844  df-card 9882  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xadd 13041  df-ioo 13275  df-ico 13277  df-icc 13278  df-fz 13432  df-fzo 13575  df-fl 13704  df-seq 13914  df-exp 13975  df-hash 14238  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-clim 15377  df-rlim 15378  df-sum 15578  df-xmet 20805  df-met 20806  df-ovol 24844  df-vol 24845  df-siga 32748
This theorem is referenced by:  volmeas  32870  mbfmvolf  32906  elmbfmvol2  32907
  Copyright terms: Public domain W3C validator