| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmvlsiga | Structured version Visualization version GIF version | ||
| Description: Lebesgue-measurable subsets of ℝ form a sigma-algebra. (Contributed by Thierry Arnoux, 10-Sep-2016.) (Revised by Thierry Arnoux, 24-Oct-2016.) |
| Ref | Expression |
|---|---|
| dmvlsiga | ⊢ dom vol ∈ (sigAlgebra‘ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwssb 5060 | . . 3 ⊢ (dom vol ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ dom vol𝑥 ⊆ ℝ) | |
| 2 | mblss 25465 | . . 3 ⊢ (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ) | |
| 3 | 1, 2 | mprgbir 3051 | . 2 ⊢ dom vol ⊆ 𝒫 ℝ |
| 4 | rembl 25474 | . . 3 ⊢ ℝ ∈ dom vol | |
| 5 | cmmbl 25468 | . . . 4 ⊢ (𝑥 ∈ dom vol → (ℝ ∖ 𝑥) ∈ dom vol) | |
| 6 | 5 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol |
| 7 | nnenom 13921 | . . . . . . . . 9 ⊢ ℕ ≈ ω | |
| 8 | 7 | ensymi 8952 | . . . . . . . 8 ⊢ ω ≈ ℕ |
| 9 | domentr 8961 | . . . . . . . 8 ⊢ ((𝑥 ≼ ω ∧ ω ≈ ℕ) → 𝑥 ≼ ℕ) | |
| 10 | 8, 9 | mpan2 691 | . . . . . . 7 ⊢ (𝑥 ≼ ω → 𝑥 ≼ ℕ) |
| 11 | elpwi 4566 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 dom vol → 𝑥 ⊆ dom vol) | |
| 12 | dfss3 3932 | . . . . . . . 8 ⊢ (𝑥 ⊆ dom vol ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) | |
| 13 | 11, 12 | sylib 218 | . . . . . . 7 ⊢ (𝑥 ∈ 𝒫 dom vol → ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
| 14 | iunmbl2 25491 | . . . . . . 7 ⊢ ((𝑥 ≼ ℕ ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ dom vol) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) | |
| 15 | 10, 13, 14 | syl2anr 597 | . . . . . 6 ⊢ ((𝑥 ∈ 𝒫 dom vol ∧ 𝑥 ≼ ω) → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
| 16 | 15 | ex 412 | . . . . 5 ⊢ (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol)) |
| 17 | uniiun 5017 | . . . . . 6 ⊢ ∪ 𝑥 = ∪ 𝑦 ∈ 𝑥 𝑦 | |
| 18 | 17 | eleq1i 2819 | . . . . 5 ⊢ (∪ 𝑥 ∈ dom vol ↔ ∪ 𝑦 ∈ 𝑥 𝑦 ∈ dom vol) |
| 19 | 16, 18 | imbitrrdi 252 | . . . 4 ⊢ (𝑥 ∈ 𝒫 dom vol → (𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)) |
| 20 | 19 | rgen 3046 | . . 3 ⊢ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol) |
| 21 | 4, 6, 20 | 3pm3.2i 1340 | . 2 ⊢ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)) |
| 22 | reex 11135 | . . . . 5 ⊢ ℝ ∈ V | |
| 23 | 22 | pwex 5330 | . . . 4 ⊢ 𝒫 ℝ ∈ V |
| 24 | 23, 3 | ssexi 5272 | . . 3 ⊢ dom vol ∈ V |
| 25 | issiga 34095 | . . 3 ⊢ (dom vol ∈ V → (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol))))) | |
| 26 | 24, 25 | ax-mp 5 | . 2 ⊢ (dom vol ∈ (sigAlgebra‘ℝ) ↔ (dom vol ⊆ 𝒫 ℝ ∧ (ℝ ∈ dom vol ∧ ∀𝑥 ∈ dom vol(ℝ ∖ 𝑥) ∈ dom vol ∧ ∀𝑥 ∈ 𝒫 dom vol(𝑥 ≼ ω → ∪ 𝑥 ∈ dom vol)))) |
| 27 | 3, 21, 26 | mpbir2an 711 | 1 ⊢ dom vol ∈ (sigAlgebra‘ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 ∪ ciun 4951 class class class wbr 5102 dom cdm 5631 ‘cfv 6499 ωcom 7822 ≈ cen 8892 ≼ cdom 8893 ℝcr 11043 ℕcn 12162 volcvol 25397 sigAlgebracsiga 34091 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-cc 10364 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-xadd 13049 df-ioo 13286 df-ico 13288 df-icc 13289 df-fz 13445 df-fzo 13592 df-fl 13730 df-seq 13943 df-exp 14003 df-hash 14272 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-sum 15629 df-xmet 21289 df-met 21290 df-ovol 25398 df-vol 25399 df-siga 34092 |
| This theorem is referenced by: volmeas 34214 mbfmvolf 34250 elmbfmvol2 34251 |
| Copyright terms: Public domain | W3C validator |