MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc1 Structured version   Visualization version   GIF version

Theorem itunitc1 10457
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
21fveq1d 6908 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎)‘𝐵) = ((𝑈𝐴)‘𝐵))
3 fveq2 6906 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
42, 3sseq12d 4028 . . 3 (𝑎 = 𝐴 → (((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎) ↔ ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)))
5 fveq2 6906 . . . . . 6 (𝑏 = ∅ → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘∅))
65sseq1d 4026 . . . . 5 (𝑏 = ∅ → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)))
7 fveq2 6906 . . . . . 6 (𝑏 = 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝑐))
87sseq1d 4026 . . . . 5 (𝑏 = 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)))
9 fveq2 6906 . . . . . 6 (𝑏 = suc 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘suc 𝑐))
109sseq1d 4026 . . . . 5 (𝑏 = suc 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
11 fveq2 6906 . . . . . 6 (𝑏 = 𝐵 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝐵))
1211sseq1d 4026 . . . . 5 (𝑏 = 𝐵 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)))
13 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1413ituni0 10455 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
15 tcid 9776 . . . . . . 7 (𝑎 ∈ V → 𝑎 ⊆ (TC‘𝑎))
1614, 15eqsstrd 4033 . . . . . 6 (𝑎 ∈ V → ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎))
1716elv 3482 . . . . 5 ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)
1813itunisuc 10456 . . . . . . 7 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
19 tctr 9777 . . . . . . . . . 10 Tr (TC‘𝑎)
20 pwtr 5462 . . . . . . . . . 10 (Tr (TC‘𝑎) ↔ Tr 𝒫 (TC‘𝑎))
2119, 20mpbi 230 . . . . . . . . 9 Tr 𝒫 (TC‘𝑎)
22 trss 5275 . . . . . . . . 9 (Tr 𝒫 (TC‘𝑎) → (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎)))
2321, 22ax-mp 5 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎))
24 fvex 6919 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ∈ V
2524elpw 4608 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
26 sspwuni 5104 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2723, 25, 263imtr3i 291 . . . . . . 7 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2818, 27eqsstrid 4043 . . . . . 6 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎))
2928a1i 11 . . . . 5 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
306, 8, 10, 12, 17, 29finds 7918 . . . 4 (𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
31 vex 3481 . . . . . . . 8 𝑎 ∈ V
3213itunifn 10454 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
33 fndm 6671 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
3431, 32, 33mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
3534eleq2i 2830 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
36 ndmfv 6941 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
3735, 36sylnbir 331 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
38 0ss 4405 . . . . 5 ∅ ⊆ (TC‘𝑎)
3937, 38eqsstrdi 4049 . . . 4 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
4030, 39pm2.61i 182 . . 3 ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)
414, 40vtoclg 3553 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
42 fv2prc 6951 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ∅)
43 0ss 4405 . . 3 ∅ ⊆ (TC‘𝐴)
4442, 43eqsstrdi 4049 . 2 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
4541, 44pm2.61i 182 1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1536  wcel 2105  Vcvv 3477  wss 3962  c0 4338  𝒫 cpw 4604   cuni 4911  cmpt 5230  Tr wtr 5264  dom cdm 5688  cres 5690  suc csuc 6387   Fn wfn 6557  cfv 6562  ωcom 7886  reccrdg 8447  TCctc 9773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-tc 9774
This theorem is referenced by:  itunitc  10458
  Copyright terms: Public domain W3C validator