MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc1 Structured version   Visualization version   GIF version

Theorem itunitc1 10364
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6846 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
21fveq1d 6848 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎)‘𝐵) = ((𝑈𝐴)‘𝐵))
3 fveq2 6846 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
42, 3sseq12d 3981 . . 3 (𝑎 = 𝐴 → (((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎) ↔ ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)))
5 fveq2 6846 . . . . . 6 (𝑏 = ∅ → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘∅))
65sseq1d 3979 . . . . 5 (𝑏 = ∅ → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)))
7 fveq2 6846 . . . . . 6 (𝑏 = 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝑐))
87sseq1d 3979 . . . . 5 (𝑏 = 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)))
9 fveq2 6846 . . . . . 6 (𝑏 = suc 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘suc 𝑐))
109sseq1d 3979 . . . . 5 (𝑏 = suc 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
11 fveq2 6846 . . . . . 6 (𝑏 = 𝐵 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝐵))
1211sseq1d 3979 . . . . 5 (𝑏 = 𝐵 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)))
13 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1413ituni0 10362 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
15 tcid 9683 . . . . . . 7 (𝑎 ∈ V → 𝑎 ⊆ (TC‘𝑎))
1614, 15eqsstrd 3986 . . . . . 6 (𝑎 ∈ V → ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎))
1716elv 3453 . . . . 5 ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)
1813itunisuc 10363 . . . . . . 7 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
19 tctr 9684 . . . . . . . . . 10 Tr (TC‘𝑎)
20 pwtr 5413 . . . . . . . . . 10 (Tr (TC‘𝑎) ↔ Tr 𝒫 (TC‘𝑎))
2119, 20mpbi 229 . . . . . . . . 9 Tr 𝒫 (TC‘𝑎)
22 trss 5237 . . . . . . . . 9 (Tr 𝒫 (TC‘𝑎) → (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎)))
2321, 22ax-mp 5 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎))
24 fvex 6859 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ∈ V
2524elpw 4568 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
26 sspwuni 5064 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2723, 25, 263imtr3i 291 . . . . . . 7 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2818, 27eqsstrid 3996 . . . . . 6 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎))
2928a1i 11 . . . . 5 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
306, 8, 10, 12, 17, 29finds 7839 . . . 4 (𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
31 vex 3451 . . . . . . . 8 𝑎 ∈ V
3213itunifn 10361 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
33 fndm 6609 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
3431, 32, 33mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
3534eleq2i 2826 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
36 ndmfv 6881 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
3735, 36sylnbir 331 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
38 0ss 4360 . . . . 5 ∅ ⊆ (TC‘𝑎)
3937, 38eqsstrdi 4002 . . . 4 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
4030, 39pm2.61i 182 . . 3 ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)
414, 40vtoclg 3527 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
42 fv2prc 6891 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ∅)
43 0ss 4360 . . 3 ∅ ⊆ (TC‘𝐴)
4442, 43eqsstrdi 4002 . 2 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
4541, 44pm2.61i 182 1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1542  wcel 2107  Vcvv 3447  wss 3914  c0 4286  𝒫 cpw 4564   cuni 4869  cmpt 5192  Tr wtr 5226  dom cdm 5637  cres 5639  suc csuc 6323   Fn wfn 6495  cfv 6500  ωcom 7806  reccrdg 8359  TCctc 9680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5246  ax-sep 5260  ax-nul 5267  ax-pr 5388  ax-un 7676  ax-inf2 9585
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-int 4912  df-iun 4960  df-iin 4961  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-ov 7364  df-om 7807  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-tc 9681
This theorem is referenced by:  itunitc  10365
  Copyright terms: Public domain W3C validator