MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc1 Structured version   Visualization version   GIF version

Theorem itunitc1 9695
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6545 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
21fveq1d 6547 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎)‘𝐵) = ((𝑈𝐴)‘𝐵))
3 fveq2 6545 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
42, 3sseq12d 3927 . . 3 (𝑎 = 𝐴 → (((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎) ↔ ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)))
5 fveq2 6545 . . . . . 6 (𝑏 = ∅ → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘∅))
65sseq1d 3925 . . . . 5 (𝑏 = ∅ → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)))
7 fveq2 6545 . . . . . 6 (𝑏 = 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝑐))
87sseq1d 3925 . . . . 5 (𝑏 = 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)))
9 fveq2 6545 . . . . . 6 (𝑏 = suc 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘suc 𝑐))
109sseq1d 3925 . . . . 5 (𝑏 = suc 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
11 fveq2 6545 . . . . . 6 (𝑏 = 𝐵 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝐵))
1211sseq1d 3925 . . . . 5 (𝑏 = 𝐵 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)))
13 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1413ituni0 9693 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
15 tcid 9034 . . . . . . 7 (𝑎 ∈ V → 𝑎 ⊆ (TC‘𝑎))
1614, 15eqsstrd 3932 . . . . . 6 (𝑎 ∈ V → ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎))
1716elv 3445 . . . . 5 ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)
1813itunisuc 9694 . . . . . . 7 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
19 tctr 9035 . . . . . . . . . 10 Tr (TC‘𝑎)
20 pwtr 5244 . . . . . . . . . 10 (Tr (TC‘𝑎) ↔ Tr 𝒫 (TC‘𝑎))
2119, 20mpbi 231 . . . . . . . . 9 Tr 𝒫 (TC‘𝑎)
22 trss 5079 . . . . . . . . 9 (Tr 𝒫 (TC‘𝑎) → (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎)))
2321, 22ax-mp 5 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎))
24 fvex 6558 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ∈ V
2524elpw 4465 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
26 sspwuni 4927 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2723, 25, 263imtr3i 292 . . . . . . 7 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2818, 27eqsstrid 3942 . . . . . 6 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎))
2928a1i 11 . . . . 5 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
306, 8, 10, 12, 17, 29finds 7471 . . . 4 (𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
31 vex 3443 . . . . . . . 8 𝑎 ∈ V
3213itunifn 9692 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
33 fndm 6332 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
3431, 32, 33mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
3534eleq2i 2876 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
36 ndmfv 6575 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
3735, 36sylnbir 332 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
38 0ss 4276 . . . . 5 ∅ ⊆ (TC‘𝑎)
3937, 38syl6eqss 3948 . . . 4 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
4030, 39pm2.61i 183 . . 3 ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)
414, 40vtoclg 3513 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
42 fv2prc 6585 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ∅)
43 0ss 4276 . . 3 ∅ ⊆ (TC‘𝐴)
4442, 43syl6eqss 3948 . 2 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
4541, 44pm2.61i 183 1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1525  wcel 2083  Vcvv 3440  wss 3865  c0 4217  𝒫 cpw 4459   cuni 4751  cmpt 5047  Tr wtr 5070  dom cdm 5450  cres 5452  suc csuc 6075   Fn wfn 6227  cfv 6232  ωcom 7443  reccrdg 7904  TCctc 9031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-om 7444  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-tc 9032
This theorem is referenced by:  itunitc  9696
  Copyright terms: Public domain W3C validator