MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itunitc1 Structured version   Visualization version   GIF version

Theorem itunitc1 10460
Description: Each union iterate is a member of the transitive closure. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Hypothesis
Ref Expression
ituni.u 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
Assertion
Ref Expression
itunitc1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)

Proof of Theorem itunitc1
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6906 . . . . 5 (𝑎 = 𝐴 → (𝑈𝑎) = (𝑈𝐴))
21fveq1d 6908 . . . 4 (𝑎 = 𝐴 → ((𝑈𝑎)‘𝐵) = ((𝑈𝐴)‘𝐵))
3 fveq2 6906 . . . 4 (𝑎 = 𝐴 → (TC‘𝑎) = (TC‘𝐴))
42, 3sseq12d 4017 . . 3 (𝑎 = 𝐴 → (((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎) ↔ ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)))
5 fveq2 6906 . . . . . 6 (𝑏 = ∅ → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘∅))
65sseq1d 4015 . . . . 5 (𝑏 = ∅ → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)))
7 fveq2 6906 . . . . . 6 (𝑏 = 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝑐))
87sseq1d 4015 . . . . 5 (𝑏 = 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎)))
9 fveq2 6906 . . . . . 6 (𝑏 = suc 𝑐 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘suc 𝑐))
109sseq1d 4015 . . . . 5 (𝑏 = suc 𝑐 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
11 fveq2 6906 . . . . . 6 (𝑏 = 𝐵 → ((𝑈𝑎)‘𝑏) = ((𝑈𝑎)‘𝐵))
1211sseq1d 4015 . . . . 5 (𝑏 = 𝐵 → (((𝑈𝑎)‘𝑏) ⊆ (TC‘𝑎) ↔ ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)))
13 ituni.u . . . . . . . 8 𝑈 = (𝑥 ∈ V ↦ (rec((𝑦 ∈ V ↦ 𝑦), 𝑥) ↾ ω))
1413ituni0 10458 . . . . . . 7 (𝑎 ∈ V → ((𝑈𝑎)‘∅) = 𝑎)
15 tcid 9779 . . . . . . 7 (𝑎 ∈ V → 𝑎 ⊆ (TC‘𝑎))
1614, 15eqsstrd 4018 . . . . . 6 (𝑎 ∈ V → ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎))
1716elv 3485 . . . . 5 ((𝑈𝑎)‘∅) ⊆ (TC‘𝑎)
1813itunisuc 10459 . . . . . . 7 ((𝑈𝑎)‘suc 𝑐) = ((𝑈𝑎)‘𝑐)
19 tctr 9780 . . . . . . . . . 10 Tr (TC‘𝑎)
20 pwtr 5457 . . . . . . . . . 10 (Tr (TC‘𝑎) ↔ Tr 𝒫 (TC‘𝑎))
2119, 20mpbi 230 . . . . . . . . 9 Tr 𝒫 (TC‘𝑎)
22 trss 5270 . . . . . . . . 9 (Tr 𝒫 (TC‘𝑎) → (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎)))
2321, 22ax-mp 5 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎))
24 fvex 6919 . . . . . . . . 9 ((𝑈𝑎)‘𝑐) ∈ V
2524elpw 4604 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ∈ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
26 sspwuni 5100 . . . . . . . 8 (((𝑈𝑎)‘𝑐) ⊆ 𝒫 (TC‘𝑎) ↔ ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2723, 25, 263imtr3i 291 . . . . . . 7 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎))
2818, 27eqsstrid 4022 . . . . . 6 (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎))
2928a1i 11 . . . . 5 (𝑐 ∈ ω → (((𝑈𝑎)‘𝑐) ⊆ (TC‘𝑎) → ((𝑈𝑎)‘suc 𝑐) ⊆ (TC‘𝑎)))
306, 8, 10, 12, 17, 29finds 7918 . . . 4 (𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
31 vex 3484 . . . . . . . 8 𝑎 ∈ V
3213itunifn 10457 . . . . . . . 8 (𝑎 ∈ V → (𝑈𝑎) Fn ω)
33 fndm 6671 . . . . . . . 8 ((𝑈𝑎) Fn ω → dom (𝑈𝑎) = ω)
3431, 32, 33mp2b 10 . . . . . . 7 dom (𝑈𝑎) = ω
3534eleq2i 2833 . . . . . 6 (𝐵 ∈ dom (𝑈𝑎) ↔ 𝐵 ∈ ω)
36 ndmfv 6941 . . . . . 6 𝐵 ∈ dom (𝑈𝑎) → ((𝑈𝑎)‘𝐵) = ∅)
3735, 36sylnbir 331 . . . . 5 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) = ∅)
38 0ss 4400 . . . . 5 ∅ ⊆ (TC‘𝑎)
3937, 38eqsstrdi 4028 . . . 4 𝐵 ∈ ω → ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎))
4030, 39pm2.61i 182 . . 3 ((𝑈𝑎)‘𝐵) ⊆ (TC‘𝑎)
414, 40vtoclg 3554 . 2 (𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
42 fv2prc 6951 . . 3 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) = ∅)
43 0ss 4400 . . 3 ∅ ⊆ (TC‘𝐴)
4442, 43eqsstrdi 4028 . 2 𝐴 ∈ V → ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴))
4541, 44pm2.61i 182 1 ((𝑈𝐴)‘𝐵) ⊆ (TC‘𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  c0 4333  𝒫 cpw 4600   cuni 4907  cmpt 5225  Tr wtr 5259  dom cdm 5685  cres 5687  suc csuc 6386   Fn wfn 6556  cfv 6561  ωcom 7887  reccrdg 8449  TCctc 9776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-tc 9777
This theorem is referenced by:  itunitc  10461
  Copyright terms: Public domain W3C validator