| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfttrcl2 | Structured version Visualization version GIF version | ||
| Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| dfttrcl2 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 4929 | . . . 4 ⊢ (t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧)) | |
| 2 | ttrclss 9673 | . . . 4 ⊢ ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧) | |
| 3 | 1, 2 | mpgbir 1799 | . . 3 ⊢ t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 5 | rabab 3478 | . . . 4 ⊢ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} | |
| 6 | 5 | inteqi 4914 | . . 3 ⊢ ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 7 | ttrclexg 9676 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | |
| 8 | ssttrcl 9668 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | |
| 9 | ttrcltr 9669 | . . . . 5 ⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | |
| 10 | 8, 9 | jctir 520 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
| 11 | sseq2 3973 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → (𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++𝑅)) | |
| 12 | coeq1 5821 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ 𝑧)) | |
| 13 | coeq2 5822 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (t++𝑅 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) | |
| 14 | 12, 13 | eqtrd 2764 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → 𝑧 = t++𝑅) | |
| 16 | 14, 15 | sseq12d 3980 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
| 17 | 11, 16 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = t++𝑅 → ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))) |
| 18 | 17 | intminss 4938 | . . . 4 ⊢ ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
| 19 | 7, 10, 18 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
| 20 | 6, 19 | eqsstrrid 3986 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
| 21 | 4, 20 | eqssd 3964 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∩ cint 4910 ∘ ccom 5642 Rel wrel 5643 t++cttrcl 9660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-ttrcl 9661 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |