Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfttrcl2 | Structured version Visualization version GIF version |
Description: When 𝑅 is a set and a relationship, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
dfttrcl2 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4873 | . . . 4 ⊢ (t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧)) | |
2 | ttrclss 33516 | . . . 4 ⊢ ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧) | |
3 | 1, 2 | mpgbir 1807 | . . 3 ⊢ t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
4 | 3 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
5 | rabab 3433 | . . . 4 ⊢ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} | |
6 | 5 | inteqi 4860 | . . 3 ⊢ ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
7 | ttrclexg 33519 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | |
8 | ssttrcl 33511 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | |
9 | ttrcltr 33512 | . . . . 5 ⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | |
10 | 8, 9 | jctir 524 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
11 | sseq2 3924 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → (𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++𝑅)) | |
12 | coeq1 5723 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ 𝑧)) | |
13 | coeq2 5724 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (t++𝑅 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) | |
14 | 12, 13 | eqtrd 2777 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) |
15 | id 22 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → 𝑧 = t++𝑅) | |
16 | 14, 15 | sseq12d 3931 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
17 | 11, 16 | anbi12d 634 | . . . . 5 ⊢ (𝑧 = t++𝑅 → ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))) |
18 | 17 | intminss 4882 | . . . 4 ⊢ ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
19 | 7, 10, 18 | syl2an 599 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
20 | 6, 19 | eqsstrrid 3947 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
21 | 4, 20 | eqssd 3915 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 {crab 3062 Vcvv 3405 ⊆ wss 3863 ∩ cint 4856 ∘ ccom 5552 Rel wrel 5553 t++cttrcl 33503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5176 ax-sep 5189 ax-nul 5196 ax-pow 5255 ax-pr 5319 ax-un 7520 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2940 df-ral 3063 df-rex 3064 df-reu 3065 df-rmo 3066 df-rab 3067 df-v 3407 df-sbc 3692 df-csb 3809 df-dif 3866 df-un 3868 df-in 3870 df-ss 3880 df-pss 3882 df-nul 4235 df-if 4437 df-pw 4512 df-sn 4539 df-pr 4541 df-tp 4543 df-op 4545 df-uni 4817 df-int 4857 df-iun 4903 df-br 5051 df-opab 5113 df-mpt 5133 df-tr 5159 df-id 5452 df-eprel 5457 df-po 5465 df-so 5466 df-fr 5506 df-we 5508 df-xp 5554 df-rel 5555 df-cnv 5556 df-co 5557 df-dm 5558 df-rn 5559 df-res 5560 df-ima 5561 df-pred 6157 df-ord 6213 df-on 6214 df-lim 6215 df-suc 6216 df-iota 6335 df-fun 6379 df-fn 6380 df-f 6381 df-f1 6382 df-fo 6383 df-f1o 6384 df-fv 6385 df-riota 7167 df-ov 7213 df-oprab 7214 df-mpo 7215 df-om 7642 df-wrecs 8044 df-recs 8105 df-rdg 8143 df-1o 8199 df-oadd 8203 df-ttrcl 33504 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |