MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfttrcl2 Structured version   Visualization version   GIF version

Theorem dfttrcl2 9614
Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dfttrcl2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Distinct variable group:   𝑧,𝑅
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem dfttrcl2
StepHypRef Expression
1 ssintab 4915 . . . 4 (t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧))
2 ttrclss 9610 . . . 4 ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧)
31, 2mpgbir 1800 . . 3 t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
43a1i 11 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5 rabab 3467 . . . 4 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
65inteqi 4901 . . 3 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7 ttrclexg 9613 . . . 4 (𝑅𝑉 → t++𝑅 ∈ V)
8 ssttrcl 9605 . . . . 5 (Rel 𝑅𝑅 ⊆ t++𝑅)
9 ttrcltr 9606 . . . . 5 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
108, 9jctir 520 . . . 4 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
11 sseq2 3961 . . . . . 6 (𝑧 = t++𝑅 → (𝑅𝑧𝑅 ⊆ t++𝑅))
12 coeq1 5797 . . . . . . . 8 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅𝑧))
13 coeq2 5798 . . . . . . . 8 (𝑧 = t++𝑅 → (t++𝑅𝑧) = (t++𝑅 ∘ t++𝑅))
1412, 13eqtrd 2766 . . . . . . 7 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅 ∘ t++𝑅))
15 id 22 . . . . . . 7 (𝑧 = t++𝑅𝑧 = t++𝑅)
1614, 15sseq12d 3968 . . . . . 6 (𝑧 = t++𝑅 → ((𝑧𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
1711, 16anbi12d 632 . . . . 5 (𝑧 = t++𝑅 → ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)))
1817intminss 4924 . . . 4 ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
197, 10, 18syl2an 596 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
206, 19eqsstrrid 3974 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
214, 20eqssd 3952 1 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  Vcvv 3436  wss 3902   cint 4897  ccom 5620  Rel wrel 5621  t++cttrcl 9597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-ttrcl 9598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator