![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfttrcl2 | Structured version Visualization version GIF version |
Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
dfttrcl2 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4972 | . . . 4 ⊢ (t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧)) | |
2 | ttrclss 9751 | . . . 4 ⊢ ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧) | |
3 | 1, 2 | mpgbir 1793 | . . 3 ⊢ t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
4 | 3 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
5 | rabab 3502 | . . . 4 ⊢ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} | |
6 | 5 | inteqi 4957 | . . 3 ⊢ ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
7 | ttrclexg 9754 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | |
8 | ssttrcl 9746 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | |
9 | ttrcltr 9747 | . . . . 5 ⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | |
10 | 8, 9 | jctir 519 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
11 | sseq2 4008 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → (𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++𝑅)) | |
12 | coeq1 5864 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ 𝑧)) | |
13 | coeq2 5865 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (t++𝑅 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) | |
14 | 12, 13 | eqtrd 2768 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) |
15 | id 22 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → 𝑧 = t++𝑅) | |
16 | 14, 15 | sseq12d 4015 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
17 | 11, 16 | anbi12d 630 | . . . . 5 ⊢ (𝑧 = t++𝑅 → ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))) |
18 | 17 | intminss 4981 | . . . 4 ⊢ ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
19 | 7, 10, 18 | syl2an 594 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
20 | 6, 19 | eqsstrrid 4031 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
21 | 4, 20 | eqssd 3999 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2705 {crab 3430 Vcvv 3473 ⊆ wss 3949 ∩ cint 4953 ∘ ccom 5686 Rel wrel 5687 t++cttrcl 9738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-ttrcl 9739 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |