| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfttrcl2 | Structured version Visualization version GIF version | ||
| Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
| Ref | Expression |
|---|---|
| dfttrcl2 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssintab 4918 | . . . 4 ⊢ (t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧)) | |
| 2 | ttrclss 9635 | . . . 4 ⊢ ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧) | |
| 3 | 1, 2 | mpgbir 1799 | . . 3 ⊢ t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 4 | 3 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| 5 | rabab 3469 | . . . 4 ⊢ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} | |
| 6 | 5 | inteqi 4903 | . . 3 ⊢ ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
| 7 | ttrclexg 9638 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | |
| 8 | ssttrcl 9630 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | |
| 9 | ttrcltr 9631 | . . . . 5 ⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | |
| 10 | 8, 9 | jctir 520 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
| 11 | sseq2 3964 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → (𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++𝑅)) | |
| 12 | coeq1 5804 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ 𝑧)) | |
| 13 | coeq2 5805 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (t++𝑅 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) | |
| 14 | 12, 13 | eqtrd 2764 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → 𝑧 = t++𝑅) | |
| 16 | 14, 15 | sseq12d 3971 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
| 17 | 11, 16 | anbi12d 632 | . . . . 5 ⊢ (𝑧 = t++𝑅 → ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))) |
| 18 | 17 | intminss 4927 | . . . 4 ⊢ ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
| 19 | 7, 10, 18 | syl2an 596 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
| 20 | 6, 19 | eqsstrrid 3977 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
| 21 | 4, 20 | eqssd 3955 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 {crab 3396 Vcvv 3438 ⊆ wss 3905 ∩ cint 4899 ∘ ccom 5627 Rel wrel 5628 t++cttrcl 9622 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-ttrcl 9623 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |