MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfttrcl2 Structured version   Visualization version   GIF version

Theorem dfttrcl2 9764
Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dfttrcl2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Distinct variable group:   𝑧,𝑅
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem dfttrcl2
StepHypRef Expression
1 ssintab 4965 . . . 4 (t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧))
2 ttrclss 9760 . . . 4 ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧)
31, 2mpgbir 1799 . . 3 t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
43a1i 11 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5 rabab 3512 . . . 4 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
65inteqi 4950 . . 3 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7 ttrclexg 9763 . . . 4 (𝑅𝑉 → t++𝑅 ∈ V)
8 ssttrcl 9755 . . . . 5 (Rel 𝑅𝑅 ⊆ t++𝑅)
9 ttrcltr 9756 . . . . 5 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
108, 9jctir 520 . . . 4 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
11 sseq2 4010 . . . . . 6 (𝑧 = t++𝑅 → (𝑅𝑧𝑅 ⊆ t++𝑅))
12 coeq1 5868 . . . . . . . 8 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅𝑧))
13 coeq2 5869 . . . . . . . 8 (𝑧 = t++𝑅 → (t++𝑅𝑧) = (t++𝑅 ∘ t++𝑅))
1412, 13eqtrd 2777 . . . . . . 7 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅 ∘ t++𝑅))
15 id 22 . . . . . . 7 (𝑧 = t++𝑅𝑧 = t++𝑅)
1614, 15sseq12d 4017 . . . . . 6 (𝑧 = t++𝑅 → ((𝑧𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
1711, 16anbi12d 632 . . . . 5 (𝑧 = t++𝑅 → ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)))
1817intminss 4974 . . . 4 ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
197, 10, 18syl2an 596 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
206, 19eqsstrrid 4023 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
214, 20eqssd 4001 1 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {cab 2714  {crab 3436  Vcvv 3480  wss 3951   cint 4946  ccom 5689  Rel wrel 5690  t++cttrcl 9747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-ttrcl 9748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator