Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfttrcl2 Structured version   Visualization version   GIF version

Theorem dfttrcl2 33520
Description: When 𝑅 is a set and a relationship, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dfttrcl2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Distinct variable group:   𝑧,𝑅
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem dfttrcl2
StepHypRef Expression
1 ssintab 4873 . . . 4 (t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧))
2 ttrclss 33516 . . . 4 ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧)
31, 2mpgbir 1807 . . 3 t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
43a1i 11 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5 rabab 3433 . . . 4 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
65inteqi 4860 . . 3 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7 ttrclexg 33519 . . . 4 (𝑅𝑉 → t++𝑅 ∈ V)
8 ssttrcl 33511 . . . . 5 (Rel 𝑅𝑅 ⊆ t++𝑅)
9 ttrcltr 33512 . . . . 5 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
108, 9jctir 524 . . . 4 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
11 sseq2 3924 . . . . . 6 (𝑧 = t++𝑅 → (𝑅𝑧𝑅 ⊆ t++𝑅))
12 coeq1 5723 . . . . . . . 8 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅𝑧))
13 coeq2 5724 . . . . . . . 8 (𝑧 = t++𝑅 → (t++𝑅𝑧) = (t++𝑅 ∘ t++𝑅))
1412, 13eqtrd 2777 . . . . . . 7 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅 ∘ t++𝑅))
15 id 22 . . . . . . 7 (𝑧 = t++𝑅𝑧 = t++𝑅)
1614, 15sseq12d 3931 . . . . . 6 (𝑧 = t++𝑅 → ((𝑧𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
1711, 16anbi12d 634 . . . . 5 (𝑧 = t++𝑅 → ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)))
1817intminss 4882 . . . 4 ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
197, 10, 18syl2an 599 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
206, 19eqsstrrid 3947 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
214, 20eqssd 3915 1 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  {cab 2714  {crab 3062  Vcvv 3405  wss 3863   cint 4856  ccom 5552  Rel wrel 5553  t++cttrcl 33503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5255  ax-pr 5319  ax-un 7520
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2940  df-ral 3063  df-rex 3064  df-reu 3065  df-rmo 3066  df-rab 3067  df-v 3407  df-sbc 3692  df-csb 3809  df-dif 3866  df-un 3868  df-in 3870  df-ss 3880  df-pss 3882  df-nul 4235  df-if 4437  df-pw 4512  df-sn 4539  df-pr 4541  df-tp 4543  df-op 4545  df-uni 4817  df-int 4857  df-iun 4903  df-br 5051  df-opab 5113  df-mpt 5133  df-tr 5159  df-id 5452  df-eprel 5457  df-po 5465  df-so 5466  df-fr 5506  df-we 5508  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6157  df-ord 6213  df-on 6214  df-lim 6215  df-suc 6216  df-iota 6335  df-fun 6379  df-fn 6380  df-f 6381  df-f1 6382  df-fo 6383  df-f1o 6384  df-fv 6385  df-riota 7167  df-ov 7213  df-oprab 7214  df-mpo 7215  df-om 7642  df-wrecs 8044  df-recs 8105  df-rdg 8143  df-1o 8199  df-oadd 8203  df-ttrcl 33504
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator