MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfttrcl2 Structured version   Visualization version   GIF version

Theorem dfttrcl2 9762
Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dfttrcl2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Distinct variable group:   𝑧,𝑅
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem dfttrcl2
StepHypRef Expression
1 ssintab 4970 . . . 4 (t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧))
2 ttrclss 9758 . . . 4 ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧)
31, 2mpgbir 1796 . . 3 t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
43a1i 11 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5 rabab 3510 . . . 4 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
65inteqi 4955 . . 3 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7 ttrclexg 9761 . . . 4 (𝑅𝑉 → t++𝑅 ∈ V)
8 ssttrcl 9753 . . . . 5 (Rel 𝑅𝑅 ⊆ t++𝑅)
9 ttrcltr 9754 . . . . 5 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
108, 9jctir 520 . . . 4 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
11 sseq2 4022 . . . . . 6 (𝑧 = t++𝑅 → (𝑅𝑧𝑅 ⊆ t++𝑅))
12 coeq1 5871 . . . . . . . 8 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅𝑧))
13 coeq2 5872 . . . . . . . 8 (𝑧 = t++𝑅 → (t++𝑅𝑧) = (t++𝑅 ∘ t++𝑅))
1412, 13eqtrd 2775 . . . . . . 7 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅 ∘ t++𝑅))
15 id 22 . . . . . . 7 (𝑧 = t++𝑅𝑧 = t++𝑅)
1614, 15sseq12d 4029 . . . . . 6 (𝑧 = t++𝑅 → ((𝑧𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
1711, 16anbi12d 632 . . . . 5 (𝑧 = t++𝑅 → ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)))
1817intminss 4979 . . . 4 ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
197, 10, 18syl2an 596 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
206, 19eqsstrrid 4045 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
214, 20eqssd 4013 1 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  {cab 2712  {crab 3433  Vcvv 3478  wss 3963   cint 4951  ccom 5693  Rel wrel 5694  t++cttrcl 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-ttrcl 9746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator