MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfttrcl2 Structured version   Visualization version   GIF version

Theorem dfttrcl2 9621
Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.)
Assertion
Ref Expression
dfttrcl2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Distinct variable group:   𝑧,𝑅
Allowed substitution hint:   𝑉(𝑧)

Proof of Theorem dfttrcl2
StepHypRef Expression
1 ssintab 4915 . . . 4 (t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧))
2 ttrclss 9617 . . . 4 ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) → t++𝑅𝑧)
31, 2mpgbir 1800 . . 3 t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
43a1i 11 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
5 rabab 3468 . . . 4 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
65inteqi 4901 . . 3 {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)}
7 ttrclexg 9620 . . . 4 (𝑅𝑉 → t++𝑅 ∈ V)
8 ssttrcl 9612 . . . . 5 (Rel 𝑅𝑅 ⊆ t++𝑅)
9 ttrcltr 9613 . . . . 5 (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅
108, 9jctir 520 . . . 4 (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
11 sseq2 3957 . . . . . 6 (𝑧 = t++𝑅 → (𝑅𝑧𝑅 ⊆ t++𝑅))
12 coeq1 5801 . . . . . . . 8 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅𝑧))
13 coeq2 5802 . . . . . . . 8 (𝑧 = t++𝑅 → (t++𝑅𝑧) = (t++𝑅 ∘ t++𝑅))
1412, 13eqtrd 2768 . . . . . . 7 (𝑧 = t++𝑅 → (𝑧𝑧) = (t++𝑅 ∘ t++𝑅))
15 id 22 . . . . . . 7 (𝑧 = t++𝑅𝑧 = t++𝑅)
1614, 15sseq12d 3964 . . . . . 6 (𝑧 = t++𝑅 → ((𝑧𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))
1711, 16anbi12d 632 . . . . 5 (𝑧 = t++𝑅 → ((𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)))
1817intminss 4924 . . . 4 ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
197, 10, 18syl2an 596 . . 3 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∈ V ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
206, 19eqsstrrid 3970 . 2 ((𝑅𝑉 ∧ Rel 𝑅) → {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)} ⊆ t++𝑅)
214, 20eqssd 3948 1 ((𝑅𝑉 ∧ Rel 𝑅) → t++𝑅 = {𝑧 ∣ (𝑅𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  {crab 3396  Vcvv 3437  wss 3898   cint 4897  ccom 5623  Rel wrel 5624  t++cttrcl 9604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-oadd 8395  df-ttrcl 9605
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator