![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfttrcl2 | Structured version Visualization version GIF version |
Description: When 𝑅 is a set and a relation, then its transitive closure can be defined by an intersection. (Contributed by Scott Fenton, 26-Oct-2024.) |
Ref | Expression |
---|---|
dfttrcl2 | ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssintab 4962 | . . . 4 ⊢ (t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ↔ ∀𝑧((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧)) | |
2 | ttrclss 9714 | . . . 4 ⊢ ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) → t++𝑅 ⊆ 𝑧) | |
3 | 1, 2 | mpgbir 1793 | . . 3 ⊢ t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
4 | 3 | a1i 11 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 ⊆ ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
5 | rabab 3497 | . . . 4 ⊢ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} | |
6 | 5 | inteqi 4947 | . . 3 ⊢ ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} |
7 | ttrclexg 9717 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → t++𝑅 ∈ V) | |
8 | ssttrcl 9709 | . . . . 5 ⊢ (Rel 𝑅 → 𝑅 ⊆ t++𝑅) | |
9 | ttrcltr 9710 | . . . . 5 ⊢ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅 | |
10 | 8, 9 | jctir 520 | . . . 4 ⊢ (Rel 𝑅 → (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
11 | sseq2 4003 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → (𝑅 ⊆ 𝑧 ↔ 𝑅 ⊆ t++𝑅)) | |
12 | coeq1 5850 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ 𝑧)) | |
13 | coeq2 5851 | . . . . . . . 8 ⊢ (𝑧 = t++𝑅 → (t++𝑅 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) | |
14 | 12, 13 | eqtrd 2766 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → (𝑧 ∘ 𝑧) = (t++𝑅 ∘ t++𝑅)) |
15 | id 22 | . . . . . . 7 ⊢ (𝑧 = t++𝑅 → 𝑧 = t++𝑅) | |
16 | 14, 15 | sseq12d 4010 | . . . . . 6 ⊢ (𝑧 = t++𝑅 → ((𝑧 ∘ 𝑧) ⊆ 𝑧 ↔ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) |
17 | 11, 16 | anbi12d 630 | . . . . 5 ⊢ (𝑧 = t++𝑅 → ((𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧) ↔ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅))) |
18 | 17 | intminss 4971 | . . . 4 ⊢ ((t++𝑅 ∈ V ∧ (𝑅 ⊆ t++𝑅 ∧ (t++𝑅 ∘ t++𝑅) ⊆ t++𝑅)) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
19 | 7, 10, 18 | syl2an 595 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∈ V ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
20 | 6, 19 | eqsstrrid 4026 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)} ⊆ t++𝑅) |
21 | 4, 20 | eqssd 3994 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ Rel 𝑅) → t++𝑅 = ∩ {𝑧 ∣ (𝑅 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2703 {crab 3426 Vcvv 3468 ⊆ wss 3943 ∩ cint 4943 ∘ ccom 5673 Rel wrel 5674 t++cttrcl 9701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-oadd 8468 df-ttrcl 9702 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |