![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hsmex2 | Structured version Visualization version GIF version |
Description: The set of hereditary size-limited sets, assuming ax-reg 9591. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
hsmex2 | ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unir1 9812 | . . . 4 ⊢ ∪ (𝑅1 “ On) = V | |
2 | 1 | rabeqi 3443 | . . 3 ⊢ {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} = {𝑠 ∈ V ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} |
3 | rabab 3501 | . . 3 ⊢ {𝑠 ∈ V ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} = {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} | |
4 | 2, 3 | eqtr2i 2759 | . 2 ⊢ {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} = {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} |
5 | hsmex 10431 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∈ ∪ (𝑅1 “ On) ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) | |
6 | 4, 5 | eqeltrid 2835 | 1 ⊢ (𝑋 ∈ 𝑉 → {𝑠 ∣ ∀𝑥 ∈ (TC‘{𝑠})𝑥 ≼ 𝑋} ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 {cab 2707 ∀wral 3059 {crab 3430 Vcvv 3472 {csn 4629 ∪ cuni 4909 class class class wbr 5149 “ cima 5680 Oncon0 6365 ‘cfv 6544 ≼ cdom 8941 TCctc 9735 𝑅1cr1 9761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-reg 9591 ax-inf2 9640 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7369 df-ov 7416 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-smo 8350 df-recs 8375 df-rdg 8414 df-en 8944 df-dom 8945 df-sdom 8946 df-oi 9509 df-har 9556 df-wdom 9564 df-tc 9736 df-r1 9763 df-rank 9764 |
This theorem is referenced by: hsmex3 10433 |
Copyright terms: Public domain | W3C validator |