Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fcnre | Structured version Visualization version GIF version |
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
fcnre.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 |
sfcnre.5 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
fcnre.6 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
Ref | Expression |
---|---|
fcnre | ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fcnre.6 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
2 | sfcnre.5 | . . . . 5 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
3 | 1, 2 | eleqtrdi 2849 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
4 | cntop1 22299 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
6 | fcnre.3 | . . . 4 ⊢ 𝑇 = ∪ 𝐽 | |
7 | 6 | toptopon 21974 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇)) |
8 | 5, 7 | sylib 217 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
9 | fcnre.1 | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
10 | retopon 23833 | . . . 4 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
11 | 9, 10 | eqeltri 2835 | . . 3 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
13 | cnf2 22308 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ) | |
14 | 8, 12, 3, 13 | syl3anc 1369 | 1 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∪ cuni 4836 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 (,)cioo 13008 topGenctg 17065 Topctop 21950 TopOnctopon 21967 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 |
This theorem is referenced by: rfcnpre2 42463 cncmpmax 42464 rfcnpre3 42465 rfcnpre4 42466 rfcnnnub 42468 stoweidlem28 43459 stoweidlem29 43460 stoweidlem36 43467 stoweidlem43 43474 stoweidlem44 43475 stoweidlem47 43478 stoweidlem52 43483 stoweidlem57 43488 stoweidlem59 43490 stoweidlem60 43491 stoweidlem61 43492 stoweidlem62 43493 stoweid 43494 |
Copyright terms: Public domain | W3C validator |