| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcnre | Structured version Visualization version GIF version | ||
| Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fcnre.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
| fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 |
| sfcnre.5 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| fcnre.6 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fcnre | ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcnre.6 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
| 2 | sfcnre.5 | . . . . 5 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 3 | 1, 2 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 4 | cntop1 23127 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | fcnre.3 | . . . 4 ⊢ 𝑇 = ∪ 𝐽 | |
| 7 | 6 | toptopon 22804 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇)) |
| 8 | 5, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
| 9 | fcnre.1 | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 10 | retopon 24651 | . . . 4 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 11 | 9, 10 | eqeltri 2824 | . . 3 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
| 13 | cnf2 23136 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ) | |
| 14 | 8, 12, 3, 13 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4871 ran crn 5639 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 (,)cioo 13306 topGenctg 17400 Topctop 22780 TopOnctopon 22797 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 |
| This theorem is referenced by: rfcnpre2 45025 cncmpmax 45026 rfcnpre3 45027 rfcnpre4 45028 rfcnnnub 45030 stoweidlem28 46026 stoweidlem29 46027 stoweidlem36 46034 stoweidlem43 46041 stoweidlem44 46042 stoweidlem47 46045 stoweidlem52 46050 stoweidlem57 46055 stoweidlem59 46057 stoweidlem60 46058 stoweidlem61 46059 stoweidlem62 46060 stoweid 46061 |
| Copyright terms: Public domain | W3C validator |