Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcnre Structured version   Visualization version   GIF version

Theorem fcnre 41490
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fcnre.1 𝐾 = (topGen‘ran (,))
fcnre.3 𝑇 = 𝐽
sfcnre.5 𝐶 = (𝐽 Cn 𝐾)
fcnre.6 (𝜑𝐹𝐶)
Assertion
Ref Expression
fcnre (𝜑𝐹:𝑇⟶ℝ)

Proof of Theorem fcnre
StepHypRef Expression
1 fcnre.6 . . . . 5 (𝜑𝐹𝐶)
2 sfcnre.5 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
31, 2eleqtrdi 2926 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 cntop1 21834 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
53, 4syl 17 . . 3 (𝜑𝐽 ∈ Top)
6 fcnre.3 . . . 4 𝑇 = 𝐽
76toptopon 21511 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇))
85, 7sylib 221 . 2 (𝜑𝐽 ∈ (TopOn‘𝑇))
9 fcnre.1 . . . 4 𝐾 = (topGen‘ran (,))
10 retopon 23358 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
119, 10eqeltri 2912 . . 3 𝐾 ∈ (TopOn‘ℝ)
1211a1i 11 . 2 (𝜑𝐾 ∈ (TopOn‘ℝ))
13 cnf2 21843 . 2 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ)
148, 12, 3, 13syl3anc 1368 1 (𝜑𝐹:𝑇⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115   cuni 4819  ran crn 5537  wf 6332  cfv 6336  (class class class)co 7138  cr 10521  (,)cioo 12724  topGenctg 16700  Topctop 21487  TopOnctopon 21504   Cn ccn 21818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-pre-lttri 10596  ax-pre-lttrn 10597
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-id 5441  df-po 5455  df-so 5456  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-ov 7141  df-oprab 7142  df-mpo 7143  df-1st 7672  df-2nd 7673  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-ioo 12728  df-topgen 16706  df-top 21488  df-topon 21505  df-bases 21540  df-cn 21821
This theorem is referenced by:  rfcnpre2  41496  cncmpmax  41497  rfcnpre3  41498  rfcnpre4  41499  rfcnnnub  41501  stoweidlem28  42512  stoweidlem29  42513  stoweidlem36  42520  stoweidlem43  42527  stoweidlem44  42528  stoweidlem47  42531  stoweidlem52  42536  stoweidlem57  42541  stoweidlem59  42543  stoweidlem60  42544  stoweidlem61  42545  stoweidlem62  42546  stoweid  42547
  Copyright terms: Public domain W3C validator