| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcnre | Structured version Visualization version GIF version | ||
| Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fcnre.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
| fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 |
| sfcnre.5 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| fcnre.6 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fcnre | ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcnre.6 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
| 2 | sfcnre.5 | . . . . 5 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 3 | 1, 2 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 4 | cntop1 23155 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | fcnre.3 | . . . 4 ⊢ 𝑇 = ∪ 𝐽 | |
| 7 | 6 | toptopon 22832 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇)) |
| 8 | 5, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
| 9 | fcnre.1 | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 10 | retopon 24678 | . . . 4 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 11 | 9, 10 | eqeltri 2827 | . . 3 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
| 13 | cnf2 23164 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ) | |
| 14 | 8, 12, 3, 13 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∪ cuni 4856 ran crn 5615 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 (,)cioo 13245 topGenctg 17341 Topctop 22808 TopOnctopon 22825 Cn ccn 23139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 df-topgen 17347 df-top 22809 df-topon 22826 df-bases 22861 df-cn 23142 |
| This theorem is referenced by: rfcnpre2 45138 cncmpmax 45139 rfcnpre3 45140 rfcnpre4 45141 rfcnnnub 45143 stoweidlem28 46136 stoweidlem29 46137 stoweidlem36 46144 stoweidlem43 46151 stoweidlem44 46152 stoweidlem47 46155 stoweidlem52 46160 stoweidlem57 46165 stoweidlem59 46167 stoweidlem60 46168 stoweidlem61 46169 stoweidlem62 46170 stoweid 46171 |
| Copyright terms: Public domain | W3C validator |