| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fcnre | Structured version Visualization version GIF version | ||
| Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| fcnre.1 | ⊢ 𝐾 = (topGen‘ran (,)) |
| fcnre.3 | ⊢ 𝑇 = ∪ 𝐽 |
| sfcnre.5 | ⊢ 𝐶 = (𝐽 Cn 𝐾) |
| fcnre.6 | ⊢ (𝜑 → 𝐹 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fcnre | ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcnre.6 | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐶) | |
| 2 | sfcnre.5 | . . . . 5 ⊢ 𝐶 = (𝐽 Cn 𝐾) | |
| 3 | 1, 2 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| 4 | cntop1 23103 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 6 | fcnre.3 | . . . 4 ⊢ 𝑇 = ∪ 𝐽 | |
| 7 | 6 | toptopon 22780 | . . 3 ⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇)) |
| 8 | 5, 7 | sylib 218 | . 2 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑇)) |
| 9 | fcnre.1 | . . . 4 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 10 | retopon 24627 | . . . 4 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 11 | 9, 10 | eqeltri 2824 | . . 3 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝜑 → 𝐾 ∈ (TopOn‘ℝ)) |
| 13 | cnf2 23112 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ) | |
| 14 | 8, 12, 3, 13 | syl3anc 1373 | 1 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cuni 4867 ran crn 5632 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 (,)cioo 13282 topGenctg 17376 Topctop 22756 TopOnctopon 22773 Cn ccn 23087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ioo 13286 df-topgen 17382 df-top 22757 df-topon 22774 df-bases 22809 df-cn 23090 |
| This theorem is referenced by: rfcnpre2 44998 cncmpmax 44999 rfcnpre3 45000 rfcnpre4 45001 rfcnnnub 45003 stoweidlem28 45999 stoweidlem29 46000 stoweidlem36 46007 stoweidlem43 46014 stoweidlem44 46015 stoweidlem47 46018 stoweidlem52 46023 stoweidlem57 46028 stoweidlem59 46030 stoweidlem60 46031 stoweidlem61 46032 stoweidlem62 46033 stoweid 46034 |
| Copyright terms: Public domain | W3C validator |