Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fcnre Structured version   Visualization version   GIF version

Theorem fcnre 44997
Description: A function continuous with respect to the standard topology, is a real mapping. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
fcnre.1 𝐾 = (topGen‘ran (,))
fcnre.3 𝑇 = 𝐽
sfcnre.5 𝐶 = (𝐽 Cn 𝐾)
fcnre.6 (𝜑𝐹𝐶)
Assertion
Ref Expression
fcnre (𝜑𝐹:𝑇⟶ℝ)

Proof of Theorem fcnre
StepHypRef Expression
1 fcnre.6 . . . . 5 (𝜑𝐹𝐶)
2 sfcnre.5 . . . . 5 𝐶 = (𝐽 Cn 𝐾)
31, 2eleqtrdi 2844 . . . 4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
4 cntop1 23176 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
53, 4syl 17 . . 3 (𝜑𝐽 ∈ Top)
6 fcnre.3 . . . 4 𝑇 = 𝐽
76toptopon 22853 . . 3 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑇))
85, 7sylib 218 . 2 (𝜑𝐽 ∈ (TopOn‘𝑇))
9 fcnre.1 . . . 4 𝐾 = (topGen‘ran (,))
10 retopon 24700 . . . 4 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
119, 10eqeltri 2830 . . 3 𝐾 ∈ (TopOn‘ℝ)
1211a1i 11 . 2 (𝜑𝐾 ∈ (TopOn‘ℝ))
13 cnf2 23185 . 2 ((𝐽 ∈ (TopOn‘𝑇) ∧ 𝐾 ∈ (TopOn‘ℝ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑇⟶ℝ)
148, 12, 3, 13syl3anc 1373 1 (𝜑𝐹:𝑇⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108   cuni 4883  ran crn 5655  wf 6526  cfv 6530  (class class class)co 7403  cr 11126  (,)cioo 13360  topGenctg 17449  Topctop 22829  TopOnctopon 22846   Cn ccn 23160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-er 8717  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-ioo 13364  df-topgen 17455  df-top 22830  df-topon 22847  df-bases 22882  df-cn 23163
This theorem is referenced by:  rfcnpre2  45003  cncmpmax  45004  rfcnpre3  45005  rfcnpre4  45006  rfcnnnub  45008  stoweidlem28  46005  stoweidlem29  46006  stoweidlem36  46013  stoweidlem43  46020  stoweidlem44  46021  stoweidlem47  46024  stoweidlem52  46029  stoweidlem57  46034  stoweidlem59  46036  stoweidlem60  46037  stoweidlem61  46038  stoweidlem62  46039  stoweid  46040
  Copyright terms: Public domain W3C validator