Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapat | Structured version Visualization version GIF version |
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapat.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapat | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | pmapat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 37230 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
4 | eqid 2738 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | pmapat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | 1, 4, 2, 5 | pmapval 37698 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
7 | 3, 6 | sylan2 592 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
8 | hlatl 37301 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
9 | 8 | ad2antrr 722 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
10 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
11 | simplr 765 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
12 | 4, 2 | atcmp 37252 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
13 | 9, 10, 11, 12 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
14 | 13 | rabbidva 3402 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃} = {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃}) |
15 | rabsn 4654 | . . 3 ⊢ (𝑃 ∈ 𝐴 → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) | |
16 | 15 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) |
17 | 7, 14, 16 | 3eqtrd 2782 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 {csn 4558 class class class wbr 5070 ‘cfv 6418 Basecbs 16840 lecple 16895 Atomscatm 37204 AtLatcal 37205 HLchlt 37291 pmapcpmap 37438 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-proset 17928 df-poset 17946 df-plt 17963 df-glb 17980 df-p0 18058 df-lat 18065 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-pmap 37445 |
This theorem is referenced by: elpmapat 37705 2polatN 37873 paddatclN 37890 |
Copyright terms: Public domain | W3C validator |