Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapat Structured version   Visualization version   GIF version

Theorem pmapat 39730
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapat.a 𝐴 = (Atoms‘𝐾)
pmapat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapat ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})

Proof of Theorem pmapat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmapat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atbase 39255 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
5 pmapat.m . . . 4 𝑀 = (pmap‘𝐾)
61, 4, 2, 5pmapval 39724 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
73, 6sylan2 593 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
8 hlatl 39326 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
98ad2antrr 726 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
10 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
11 simplr 768 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑃𝐴)
124, 2atcmp 39277 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
139, 10, 11, 12syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
1413rabbidva 3409 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞(le‘𝐾)𝑃} = {𝑞𝐴𝑞 = 𝑃})
15 rabsn 4681 . . 3 (𝑃𝐴 → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
1615adantl 481 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
177, 14, 163eqtrd 2768 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3402  {csn 4585   class class class wbr 5102  cfv 6499  Basecbs 17155  lecple 17203  Atomscatm 39229  AtLatcal 39230  HLchlt 39316  pmapcpmap 39464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-proset 18231  df-poset 18250  df-plt 18265  df-glb 18282  df-p0 18360  df-lat 18367  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-pmap 39471
This theorem is referenced by:  elpmapat  39731  2polatN  39899  paddatclN  39916
  Copyright terms: Public domain W3C validator