![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapat | Structured version Visualization version GIF version |
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
pmapat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
pmapat.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
pmapat | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | pmapat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 35310 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
4 | eqid 2799 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
5 | pmapat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | 1, 4, 2, 5 | pmapval 35778 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
7 | 3, 6 | sylan2 587 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
8 | hlatl 35381 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
9 | 8 | ad2antrr 718 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
10 | simpr 478 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
11 | simplr 786 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
12 | 4, 2 | atcmp 35332 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
13 | 9, 10, 11, 12 | syl3anc 1491 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
14 | 13 | rabbidva 3372 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃} = {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃}) |
15 | rabsn 4445 | . . 3 ⊢ (𝑃 ∈ 𝐴 → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) | |
16 | 15 | adantl 474 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) |
17 | 7, 14, 16 | 3eqtrd 2837 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 {crab 3093 {csn 4368 class class class wbr 4843 ‘cfv 6101 Basecbs 16184 lecple 16274 Atomscatm 35284 AtLatcal 35285 HLchlt 35371 pmapcpmap 35518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-proset 17243 df-poset 17261 df-plt 17273 df-glb 17290 df-p0 17354 df-lat 17361 df-covers 35287 df-ats 35288 df-atl 35319 df-cvlat 35343 df-hlat 35372 df-pmap 35525 |
This theorem is referenced by: elpmapat 35785 2polatN 35953 paddatclN 35970 |
Copyright terms: Public domain | W3C validator |