Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapat Structured version   Visualization version   GIF version

Theorem pmapat 37777
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
pmapat.a 𝐴 = (Atoms‘𝐾)
pmapat.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapat ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})

Proof of Theorem pmapat
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 pmapat.a . . . 4 𝐴 = (Atoms‘𝐾)
31, 2atbase 37303 . . 3 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
5 pmapat.m . . . 4 𝑀 = (pmap‘𝐾)
61, 4, 2, 5pmapval 37771 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
73, 6sylan2 593 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑞𝐴𝑞(le‘𝐾)𝑃})
8 hlatl 37374 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
98ad2antrr 723 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝐾 ∈ AtLat)
10 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑞𝐴)
11 simplr 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → 𝑃𝐴)
124, 2atcmp 37325 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
139, 10, 11, 12syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (𝑞(le‘𝐾)𝑃𝑞 = 𝑃))
1413rabbidva 3413 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞(le‘𝐾)𝑃} = {𝑞𝐴𝑞 = 𝑃})
15 rabsn 4657 . . 3 (𝑃𝐴 → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
1615adantl 482 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → {𝑞𝐴𝑞 = 𝑃} = {𝑃})
177, 14, 163eqtrd 2782 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (𝑀𝑃) = {𝑃})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  {csn 4561   class class class wbr 5074  cfv 6433  Basecbs 16912  lecple 16969  Atomscatm 37277  AtLatcal 37278  HLchlt 37364  pmapcpmap 37511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-proset 18013  df-poset 18031  df-plt 18048  df-glb 18065  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-pmap 37518
This theorem is referenced by:  elpmapat  37778  2polatN  37946  paddatclN  37963
  Copyright terms: Public domain W3C validator