| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pmapat | Structured version Visualization version GIF version | ||
| Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012.) |
| Ref | Expression |
|---|---|
| pmapat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pmapat.m | ⊢ 𝑀 = (pmap‘𝐾) |
| Ref | Expression |
|---|---|
| pmapat | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | pmapat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39272 | . . 3 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 4 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 5 | pmapat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 6 | 1, 4, 2, 5 | pmapval 39740 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾)) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
| 7 | 3, 6 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃}) |
| 8 | hlatl 39343 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 9 | 8 | ad2antrr 726 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝐾 ∈ AtLat) |
| 10 | simpr 484 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑞 ∈ 𝐴) | |
| 11 | simplr 768 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → 𝑃 ∈ 𝐴) | |
| 12 | 4, 2 | atcmp 39294 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑞 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
| 13 | 9, 10, 11, 12 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ 𝑞 ∈ 𝐴) → (𝑞(le‘𝐾)𝑃 ↔ 𝑞 = 𝑃)) |
| 14 | 13 | rabbidva 3401 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞(le‘𝐾)𝑃} = {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃}) |
| 15 | rabsn 4673 | . . 3 ⊢ (𝑃 ∈ 𝐴 → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) | |
| 16 | 15 | adantl 481 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → {𝑞 ∈ 𝐴 ∣ 𝑞 = 𝑃} = {𝑃}) |
| 17 | 7, 14, 16 | 3eqtrd 2768 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → (𝑀‘𝑃) = {𝑃}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3394 {csn 4577 class class class wbr 5092 ‘cfv 6482 Basecbs 17120 lecple 17168 Atomscatm 39246 AtLatcal 39247 HLchlt 39333 pmapcpmap 39480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-proset 18200 df-poset 18219 df-plt 18234 df-glb 18251 df-p0 18329 df-lat 18338 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-pmap 39487 |
| This theorem is referenced by: elpmapat 39747 2polatN 39915 paddatclN 39932 |
| Copyright terms: Public domain | W3C validator |