Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0 Structured version   Visualization version   GIF version

Theorem dia0 41009
Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
dia0.b 𝐵 = (Base‘𝐾)
dia0.z 0 = (0.‘𝐾)
dia0.h 𝐻 = (LHyp‘𝐾)
dia0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})

Proof of Theorem dia0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlatl 39316 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3 dia0.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dia0.z . . . . . 6 0 = (0.‘𝐾)
53, 4atl0cl 39259 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
62, 5syl 17 . . . 4 (𝐾 ∈ HL → 0𝐵)
76adantr 480 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐵)
8 dia0.h . . . . 5 𝐻 = (LHyp‘𝐾)
93, 8lhpbase 39955 . . . 4 (𝑊𝐻𝑊𝐵)
10 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
113, 10, 4atl0le 39260 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑊𝐵) → 0 (le‘𝐾)𝑊)
122, 9, 11syl2an 595 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
13 eqid 2740 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2740 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
15 dia0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
163, 10, 8, 13, 14, 15diaval 40989 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 0𝐵0 (le‘𝐾)𝑊)) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
171, 7, 12, 16syl12anc 836 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
182ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat)
193, 8, 13, 14trlcl 40121 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵)
203, 10, 4atlle0 39261 . . . . 5 ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2118, 19, 20syl2anc 583 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
223, 4, 8, 13, 14trlid0b 40135 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2321, 22bitr4d 282 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0𝑓 = ( I ↾ 𝐵)))
2423rabbidva 3450 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)})
253, 8, 13idltrn 40107 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
26 rabsn 4746 . . 3 (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2725, 26syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2817, 24, 273eqtrd 2784 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {crab 3443  {csn 4648   class class class wbr 5166   I cid 5592  cres 5702  cfv 6573  Basecbs 17258  lecple 17318  0.cp0 18493  AtLatcal 39220  HLchlt 39306  LHypclh 39941  LTrncltrn 40058  trLctrl 40115  DIsoAcdia 40985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-disoa 40986
This theorem is referenced by:  dib0  41121
  Copyright terms: Public domain W3C validator