Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0 | Structured version Visualization version GIF version |
Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.) |
Ref | Expression |
---|---|
dia0.b | ⊢ 𝐵 = (Base‘𝐾) |
dia0.z | ⊢ 0 = (0.‘𝐾) |
dia0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dia0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
Ref | Expression |
---|---|
dia0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | hlatl 37301 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
3 | dia0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
4 | dia0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
5 | 3, 4 | atl0cl 37244 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝐾 ∈ HL → 0 ∈ 𝐵) |
7 | 6 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐵) |
8 | dia0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
9 | 3, 8 | lhpbase 37939 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
10 | eqid 2738 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | 3, 10, 4 | atl0le 37245 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑊 ∈ 𝐵) → 0 (le‘𝐾)𝑊) |
12 | 2, 9, 11 | syl2an 595 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
13 | eqid 2738 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
14 | eqid 2738 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
15 | dia0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
16 | 3, 10, 8, 13, 14, 15 | diaval 38973 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 0 ∈ 𝐵 ∧ 0 (le‘𝐾)𝑊)) → (𝐼‘ 0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 }) |
17 | 1, 7, 12, 16 | syl12anc 833 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 }) |
18 | 2 | ad2antrr 722 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat) |
19 | 3, 8, 13, 14 | trlcl 38105 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) |
20 | 3, 10, 4 | atlle0 37246 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
21 | 18, 19, 20 | syl2anc 583 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
22 | 3, 4, 8, 13, 14 | trlid0b 38119 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
23 | 21, 22 | bitr4d 281 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ 𝑓 = ( I ↾ 𝐵))) |
24 | 23 | rabbidva 3402 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)}) |
25 | 3, 8, 13 | idltrn 38091 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
26 | rabsn 4654 | . . 3 ⊢ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)}) | |
27 | 25, 26 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)}) |
28 | 17, 24, 27 | 3eqtrd 2782 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 {csn 4558 class class class wbr 5070 I cid 5479 ↾ cres 5582 ‘cfv 6418 Basecbs 16840 lecple 16895 0.cp0 18056 AtLatcal 37205 HLchlt 37291 LHypclh 37925 LTrncltrn 38042 trLctrl 38099 DIsoAcdia 38969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-disoa 38970 |
This theorem is referenced by: dib0 39105 |
Copyright terms: Public domain | W3C validator |