Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dia0 Structured version   Visualization version   GIF version

Theorem dia0 38348
Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
dia0.b 𝐵 = (Base‘𝐾)
dia0.z 0 = (0.‘𝐾)
dia0.h 𝐻 = (LHyp‘𝐾)
dia0.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
Assertion
Ref Expression
dia0 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})

Proof of Theorem dia0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 hlatl 36656 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
3 dia0.b . . . . . 6 𝐵 = (Base‘𝐾)
4 dia0.z . . . . . 6 0 = (0.‘𝐾)
53, 4atl0cl 36599 . . . . 5 (𝐾 ∈ AtLat → 0𝐵)
62, 5syl 17 . . . 4 (𝐾 ∈ HL → 0𝐵)
76adantr 484 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0𝐵)
8 dia0.h . . . . 5 𝐻 = (LHyp‘𝐾)
93, 8lhpbase 37294 . . . 4 (𝑊𝐻𝑊𝐵)
10 eqid 2798 . . . . 5 (le‘𝐾) = (le‘𝐾)
113, 10, 4atl0le 36600 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑊𝐵) → 0 (le‘𝐾)𝑊)
122, 9, 11syl2an 598 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 0 (le‘𝐾)𝑊)
13 eqid 2798 . . . 4 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
14 eqid 2798 . . . 4 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
15 dia0.i . . . 4 𝐼 = ((DIsoA‘𝐾)‘𝑊)
163, 10, 8, 13, 14, 15diaval 38328 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( 0𝐵0 (le‘𝐾)𝑊)) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
171, 7, 12, 16syl12anc 835 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 })
182ad2antrr 725 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat)
193, 8, 13, 14trlcl 37460 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵)
203, 10, 4atlle0 36601 . . . . 5 ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2118, 19, 20syl2anc 587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
223, 4, 8, 13, 14trlid0b 37474 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 ))
2321, 22bitr4d 285 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0𝑓 = ( I ↾ 𝐵)))
2423rabbidva 3425 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)})
253, 8, 13idltrn 37446 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊))
26 rabsn 4617 . . 3 (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2725, 26syl 17 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)})
2817, 24, 273eqtrd 2837 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼0 ) = {( I ↾ 𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  {crab 3110  {csn 4525   class class class wbr 5030   I cid 5424  cres 5521  cfv 6324  Basecbs 16475  lecple 16564  0.cp0 17639  AtLatcal 36560  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  trLctrl 37454  DIsoAcdia 38324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-map 8391  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455  df-disoa 38325
This theorem is referenced by:  dib0  38460
  Copyright terms: Public domain W3C validator