| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dia0 | Structured version Visualization version GIF version | ||
| Description: The value of the partial isomorphism A at the lattice zero is the singleton of the identity translation i.e. the zero subspace. (Contributed by NM, 26-Nov-2013.) |
| Ref | Expression |
|---|---|
| dia0.b | ⊢ 𝐵 = (Base‘𝐾) |
| dia0.z | ⊢ 0 = (0.‘𝐾) |
| dia0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dia0.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| Ref | Expression |
|---|---|
| dia0 | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 2 | hlatl 39378 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 3 | dia0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 4 | dia0.z | . . . . . 6 ⊢ 0 = (0.‘𝐾) | |
| 5 | 3, 4 | atl0cl 39321 | . . . . 5 ⊢ (𝐾 ∈ AtLat → 0 ∈ 𝐵) |
| 6 | 2, 5 | syl 17 | . . . 4 ⊢ (𝐾 ∈ HL → 0 ∈ 𝐵) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ 𝐵) |
| 8 | dia0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 9 | 3, 8 | lhpbase 40017 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 10 | eqid 2735 | . . . . 5 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 11 | 3, 10, 4 | atl0le 39322 | . . . 4 ⊢ ((𝐾 ∈ AtLat ∧ 𝑊 ∈ 𝐵) → 0 (le‘𝐾)𝑊) |
| 12 | 2, 9, 11 | syl2an 596 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 (le‘𝐾)𝑊) |
| 13 | eqid 2735 | . . . 4 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 14 | eqid 2735 | . . . 4 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 15 | dia0.i | . . . 4 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 16 | 3, 10, 8, 13, 14, 15 | diaval 41051 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( 0 ∈ 𝐵 ∧ 0 (le‘𝐾)𝑊)) → (𝐼‘ 0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 }) |
| 17 | 1, 7, 12, 16 | syl12anc 836 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 }) |
| 18 | 2 | ad2antrr 726 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → 𝐾 ∈ AtLat) |
| 19 | 3, 8, 13, 14 | trlcl 40183 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) |
| 20 | 3, 10, 4 | atlle0 39323 | . . . . 5 ⊢ ((𝐾 ∈ AtLat ∧ (((trL‘𝐾)‘𝑊)‘𝑓) ∈ 𝐵) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
| 21 | 18, 19, 20 | syl2anc 584 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
| 22 | 3, 4, 8, 13, 14 | trlid0b 40197 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → (𝑓 = ( I ↾ 𝐵) ↔ (((trL‘𝐾)‘𝑊)‘𝑓) = 0 )) |
| 23 | 21, 22 | bitr4d 282 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑓 ∈ ((LTrn‘𝐾)‘𝑊)) → ((((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 ↔ 𝑓 = ( I ↾ 𝐵))) |
| 24 | 23 | rabbidva 3422 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ (((trL‘𝐾)‘𝑊)‘𝑓)(le‘𝐾) 0 } = {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)}) |
| 25 | 3, 8, 13 | idltrn 40169 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊)) |
| 26 | rabsn 4697 | . . 3 ⊢ (( I ↾ 𝐵) ∈ ((LTrn‘𝐾)‘𝑊) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)}) | |
| 27 | 25, 26 | syl 17 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → {𝑓 ∈ ((LTrn‘𝐾)‘𝑊) ∣ 𝑓 = ( I ↾ 𝐵)} = {( I ↾ 𝐵)}) |
| 28 | 17, 24, 27 | 3eqtrd 2774 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {( I ↾ 𝐵)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {crab 3415 {csn 4601 class class class wbr 5119 I cid 5547 ↾ cres 5656 ‘cfv 6531 Basecbs 17228 lecple 17278 0.cp0 18433 AtLatcal 39282 HLchlt 39368 LHypclh 40003 LTrncltrn 40120 trLctrl 40177 DIsoAcdia 41047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-disoa 41048 |
| This theorem is referenced by: dib0 41183 |
| Copyright terms: Public domain | W3C validator |