Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lco0 Structured version   Visualization version   GIF version

Theorem lco0 44836
Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lco0 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})

Proof of Theorem lco0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5221 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2 eqid 2798 . . . 4 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2798 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2798 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
52, 3, 4lcoop 44820 . . 3 ((𝑀 ∈ Mnd ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
61, 5mpan2 690 . 2 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
7 fvex 6658 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
8 map0e 8429 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
97, 8mp1i 13 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
10 df1o2 8099 . . . . . 6 1o = {∅}
119, 10eqtrdi 2849 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
1211rexeqdv 3365 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ ∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))))
13 lincval0 44824 . . . . . . . 8 (𝑀 ∈ Mnd → (∅( linC ‘𝑀)∅) = (0g𝑀))
1413adantr 484 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (0g𝑀))
1514eqeq2d 2809 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (∅( linC ‘𝑀)∅) ↔ 𝑣 = (0g𝑀)))
1615anbi2d 631 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
17 0ex 5175 . . . . . 6 ∅ ∈ V
18 breq1 5033 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
19 fvex 6658 . . . . . . . . . . 11 (0g‘(Scalar‘𝑀)) ∈ V
20 0fsupp 8839 . . . . . . . . . . 11 ((0g‘(Scalar‘𝑀)) ∈ V → ∅ finSupp (0g‘(Scalar‘𝑀)))
2119, 20ax-mp 5 . . . . . . . . . 10 ∅ finSupp (0g‘(Scalar‘𝑀))
22 0fin 8730 . . . . . . . . . 10 ∅ ∈ Fin
2321, 222th 267 . . . . . . . . 9 (∅ finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin)
2418, 23syl6bb 290 . . . . . . . 8 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin))
25 oveq1 7142 . . . . . . . . 9 (𝑤 = ∅ → (𝑤( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
2625eqeq2d 2809 . . . . . . . 8 (𝑤 = ∅ → (𝑣 = (𝑤( linC ‘𝑀)∅) ↔ 𝑣 = (∅( linC ‘𝑀)∅)))
2724, 26anbi12d 633 . . . . . . 7 (𝑤 = ∅ → ((𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2827rexsng 4574 . . . . . 6 (∅ ∈ V → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2917, 28mp1i 13 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
3022a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ∅ ∈ Fin)
3130biantrurd 536 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (0g𝑀) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
3216, 29, 313bitr4d 314 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3312, 32bitrd 282 . . 3 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3433rabbidva 3425 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))} = {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)})
35 eqid 2798 . . . 4 (0g𝑀) = (0g𝑀)
362, 35mndidcl 17918 . . 3 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
37 rabsn 4617 . . 3 ((0g𝑀) ∈ (Base‘𝑀) → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
3836, 37syl 17 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
396, 34, 383eqtrd 2837 1 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107  {crab 3110  Vcvv 3441  c0 4243  𝒫 cpw 4497  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  1oc1o 8078  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817  Basecbs 16475  Scalarcsca 16560  0gc0g 16705  Mndcmnd 17903   linC clinc 44813   LinCo clinco 44814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-map 8391  df-en 8493  df-fin 8496  df-fsupp 8818  df-seq 13365  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-linc 44815  df-lco 44816
This theorem is referenced by:  lcoel0  44837
  Copyright terms: Public domain W3C validator