Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lco0 Structured version   Visualization version   GIF version

Theorem lco0 48552
Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lco0 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})

Proof of Theorem lco0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5296 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2 eqid 2733 . . . 4 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2733 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2733 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
52, 3, 4lcoop 48536 . . 3 ((𝑀 ∈ Mnd ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
61, 5mpan2 691 . 2 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
7 fvex 6841 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
8 map0e 8812 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
97, 8mp1i 13 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
10 df1o2 8398 . . . . . 6 1o = {∅}
119, 10eqtrdi 2784 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
1211rexeqdv 3294 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ ∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))))
13 lincval0 48540 . . . . . . . 8 (𝑀 ∈ Mnd → (∅( linC ‘𝑀)∅) = (0g𝑀))
1413adantr 480 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (0g𝑀))
1514eqeq2d 2744 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (∅( linC ‘𝑀)∅) ↔ 𝑣 = (0g𝑀)))
1615anbi2d 630 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
17 0ex 5247 . . . . . 6 ∅ ∈ V
18 breq1 5096 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
19 fvex 6841 . . . . . . . . . . 11 (0g‘(Scalar‘𝑀)) ∈ V
20 0fsupp 9281 . . . . . . . . . . 11 ((0g‘(Scalar‘𝑀)) ∈ V → ∅ finSupp (0g‘(Scalar‘𝑀)))
2119, 20ax-mp 5 . . . . . . . . . 10 ∅ finSupp (0g‘(Scalar‘𝑀))
22 0fi 8971 . . . . . . . . . 10 ∅ ∈ Fin
2321, 222th 264 . . . . . . . . 9 (∅ finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin)
2418, 23bitrdi 287 . . . . . . . 8 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin))
25 oveq1 7359 . . . . . . . . 9 (𝑤 = ∅ → (𝑤( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
2625eqeq2d 2744 . . . . . . . 8 (𝑤 = ∅ → (𝑣 = (𝑤( linC ‘𝑀)∅) ↔ 𝑣 = (∅( linC ‘𝑀)∅)))
2724, 26anbi12d 632 . . . . . . 7 (𝑤 = ∅ → ((𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2827rexsng 4628 . . . . . 6 (∅ ∈ V → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2917, 28mp1i 13 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
3022a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ∅ ∈ Fin)
3130biantrurd 532 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (0g𝑀) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
3216, 29, 313bitr4d 311 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3312, 32bitrd 279 . . 3 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3433rabbidva 3402 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))} = {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)})
35 eqid 2733 . . . 4 (0g𝑀) = (0g𝑀)
362, 35mndidcl 18659 . . 3 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
37 rabsn 4673 . . 3 ((0g𝑀) ∈ (Base‘𝑀) → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
3836, 37syl 17 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
396, 34, 383eqtrd 2772 1 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  cfv 6486  (class class class)co 7352  1oc1o 8384  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252  Basecbs 17122  Scalarcsca 17166  0gc0g 17345  Mndcmnd 18644   linC clinc 48529   LinCo clinco 48530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-map 8758  df-en 8876  df-fin 8879  df-fsupp 9253  df-seq 13911  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-linc 48531  df-lco 48532
This theorem is referenced by:  lcoel0  48553
  Copyright terms: Public domain W3C validator