Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lco0 Structured version   Visualization version   GIF version

Theorem lco0 48156
Description: The set of empty linear combinations over a monoid is the singleton with the identity element of the monoid. (Contributed by AV, 12-Apr-2019.)
Assertion
Ref Expression
lco0 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})

Proof of Theorem lco0
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0elpw 5374 . . 3 ∅ ∈ 𝒫 (Base‘𝑀)
2 eqid 2740 . . . 4 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2740 . . . 4 (Scalar‘𝑀) = (Scalar‘𝑀)
4 eqid 2740 . . . 4 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
52, 3, 4lcoop 48140 . . 3 ((𝑀 ∈ Mnd ∧ ∅ ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
61, 5mpan2 690 . 2 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))})
7 fvex 6933 . . . . . . 7 (Base‘(Scalar‘𝑀)) ∈ V
8 map0e 8940 . . . . . . 7 ((Base‘(Scalar‘𝑀)) ∈ V → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
97, 8mp1i 13 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = 1o)
10 df1o2 8529 . . . . . 6 1o = {∅}
119, 10eqtrdi 2796 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((Base‘(Scalar‘𝑀)) ↑m ∅) = {∅})
1211rexeqdv 3335 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ ∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))))
13 lincval0 48144 . . . . . . . 8 (𝑀 ∈ Mnd → (∅( linC ‘𝑀)∅) = (0g𝑀))
1413adantr 480 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∅( linC ‘𝑀)∅) = (0g𝑀))
1514eqeq2d 2751 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (∅( linC ‘𝑀)∅) ↔ 𝑣 = (0g𝑀)))
1615anbi2d 629 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ((∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
17 0ex 5325 . . . . . 6 ∅ ∈ V
18 breq1 5169 . . . . . . . . 9 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ finSupp (0g‘(Scalar‘𝑀))))
19 fvex 6933 . . . . . . . . . . 11 (0g‘(Scalar‘𝑀)) ∈ V
20 0fsupp 9459 . . . . . . . . . . 11 ((0g‘(Scalar‘𝑀)) ∈ V → ∅ finSupp (0g‘(Scalar‘𝑀)))
2119, 20ax-mp 5 . . . . . . . . . 10 ∅ finSupp (0g‘(Scalar‘𝑀))
22 0fi 9108 . . . . . . . . . 10 ∅ ∈ Fin
2321, 222th 264 . . . . . . . . 9 (∅ finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin)
2418, 23bitrdi 287 . . . . . . . 8 (𝑤 = ∅ → (𝑤 finSupp (0g‘(Scalar‘𝑀)) ↔ ∅ ∈ Fin))
25 oveq1 7455 . . . . . . . . 9 (𝑤 = ∅ → (𝑤( linC ‘𝑀)∅) = (∅( linC ‘𝑀)∅))
2625eqeq2d 2751 . . . . . . . 8 (𝑤 = ∅ → (𝑣 = (𝑤( linC ‘𝑀)∅) ↔ 𝑣 = (∅( linC ‘𝑀)∅)))
2724, 26anbi12d 631 . . . . . . 7 (𝑤 = ∅ → ((𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2827rexsng 4698 . . . . . 6 (∅ ∈ V → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
2917, 28mp1i 13 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ (∅ ∈ Fin ∧ 𝑣 = (∅( linC ‘𝑀)∅))))
3022a1i 11 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → ∅ ∈ Fin)
3130biantrurd 532 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (𝑣 = (0g𝑀) ↔ (∅ ∈ Fin ∧ 𝑣 = (0g𝑀))))
3216, 29, 313bitr4d 311 . . . 4 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ {∅} (𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3312, 32bitrd 279 . . 3 ((𝑀 ∈ Mnd ∧ 𝑣 ∈ (Base‘𝑀)) → (∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅)) ↔ 𝑣 = (0g𝑀)))
3433rabbidva 3450 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ ∃𝑤 ∈ ((Base‘(Scalar‘𝑀)) ↑m ∅)(𝑤 finSupp (0g‘(Scalar‘𝑀)) ∧ 𝑣 = (𝑤( linC ‘𝑀)∅))} = {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)})
35 eqid 2740 . . . 4 (0g𝑀) = (0g𝑀)
362, 35mndidcl 18787 . . 3 (𝑀 ∈ Mnd → (0g𝑀) ∈ (Base‘𝑀))
37 rabsn 4746 . . 3 ((0g𝑀) ∈ (Base‘𝑀) → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
3836, 37syl 17 . 2 (𝑀 ∈ Mnd → {𝑣 ∈ (Base‘𝑀) ∣ 𝑣 = (0g𝑀)} = {(0g𝑀)})
396, 34, 383eqtrd 2784 1 (𝑀 ∈ Mnd → (𝑀 LinCo ∅) = {(0g𝑀)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  Vcvv 3488  c0 4352  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  1oc1o 8515  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  Scalarcsca 17314  0gc0g 17499  Mndcmnd 18772   linC clinc 48133   LinCo clinco 48134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-map 8886  df-en 9004  df-fin 9007  df-fsupp 9432  df-seq 14053  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-linc 48135  df-lco 48136
This theorem is referenced by:  lcoel0  48157
  Copyright terms: Public domain W3C validator