MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Visualization version   GIF version

Theorem sylow3lem6 19152
Description: Lemma for sylow3 19153, second part. Using the lemma sylow2a 19139, show that the number of sylow subgroups is equivalent mod 𝑃 to the number of fixed points under the group action. But 𝐾 is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem5.a + = (+g𝐺)
sylow3lem5.d = (-g𝐺)
sylow3lem5.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem5.m = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem6.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
Assertion
Ref Expression
sylow3lem6 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥,𝑠,𝑦,𝑧,   𝐾,𝑠,𝑥,𝑦,𝑧   𝑧,𝑁   𝑥,𝑋,𝑦,𝑧   𝐺,𝑠,𝑥,𝑦,𝑧   𝜑,𝑠,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑃,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑠)   (𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑋(𝑠)

Proof of Theorem sylow3lem6
Dummy variables 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
2 sylow3.x . . . . . 6 𝑋 = (Base‘𝐺)
3 sylow3.g . . . . . 6 (𝜑𝐺 ∈ Grp)
4 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
6 sylow3lem5.a . . . . . 6 + = (+g𝐺)
7 sylow3lem5.d . . . . . 6 = (-g𝐺)
8 sylow3lem5.k . . . . . 6 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem5.m . . . . . 6 = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 19151 . . . . 5 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
11 eqid 2738 . . . . . . 7 (𝐺s 𝐾) = (𝐺s 𝐾)
1211slwpgp 19133 . . . . . 6 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐾))
138, 12syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐾))
14 slwsubg 19130 . . . . . . . 8 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
158, 14syl 17 . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1611subgbas 18674 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
1715, 16syl 17 . . . . . 6 (𝜑𝐾 = (Base‘(𝐺s 𝐾)))
182subgss 18671 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
1915, 18syl 17 . . . . . . 7 (𝜑𝐾𝑋)
204, 19ssfid 8971 . . . . . 6 (𝜑𝐾 ∈ Fin)
2117, 20eqeltrrd 2840 . . . . 5 (𝜑 → (Base‘(𝐺s 𝐾)) ∈ Fin)
22 pwfi 8923 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
234, 22sylib 217 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ Fin)
24 slwsubg 19130 . . . . . . . 8 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
252subgss 18671 . . . . . . . . 9 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
2624, 25syl 17 . . . . . . . 8 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
2724, 26elpwd 4538 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
2827ssriv 3921 . . . . . 6 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
29 ssfi 8918 . . . . . 6 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
3023, 28, 29sylancl 585 . . . . 5 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
31 eqid 2738 . . . . 5 {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}
32 eqid 2738 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)} = {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)}
331, 10, 13, 21, 30, 31, 32sylow2a 19139 . . . 4 (𝜑𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})))
34 eqcom 2745 . . . . . . . . . . . . . 14 (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
3519adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾𝑋)
3635sselda 3917 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝑋)
3736biantrurd 532 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
3834, 37syl5bb 282 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
39 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝐾)
40 simplr 765 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (𝑃 pSyl 𝐺))
41 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑦 = 𝑠)
42 simpl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑥 = 𝑔)
4342oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑥 + 𝑧) = (𝑔 + 𝑧))
4443, 42oveq12d 7273 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → ((𝑥 + 𝑧) 𝑥) = ((𝑔 + 𝑧) 𝑔))
4541, 44mpteq12dv 5161 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
4645rneqd 5836 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑔𝑦 = 𝑠) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
47 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑠 ∈ V
4847mptex 7081 . . . . . . . . . . . . . . . . 17 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
4948rnex 7733 . . . . . . . . . . . . . . . 16 ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
5046, 9, 49ovmpoa 7406 . . . . . . . . . . . . . . 15 ((𝑔𝐾𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5139, 40, 50syl2anc 583 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5251eqeq1d 2740 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠 ↔ ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠))
53 slwsubg 19130 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑃 pSyl 𝐺) → 𝑠 ∈ (SubGrp‘𝐺))
5453ad2antlr 723 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
55 eqid 2738 . . . . . . . . . . . . . . 15 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔))
56 sylow3lem6.n . . . . . . . . . . . . . . 15 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
572, 6, 7, 55, 56conjnmzb 18784 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubGrp‘𝐺) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
5854, 57syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
5938, 52, 583bitr4d 310 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠𝑔𝑁))
6059ralbidva 3119 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔𝐾 𝑔𝑁))
61 dfss3 3905 . . . . . . . . . . 11 (𝐾𝑁 ↔ ∀𝑔𝐾 𝑔𝑁)
6260, 61bitr4di 288 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠𝐾𝑁))
6317adantr 480 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾 = (Base‘(𝐺s 𝐾)))
6463raleqdv 3339 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠))
65 eqid 2738 . . . . . . . . . . . . 13 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
663ad2antrr 722 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐺 ∈ Grp)
6756, 2, 6nmzsubg 18708 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
6866, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
69 eqid 2738 . . . . . . . . . . . . . . . 16 (𝐺s 𝑁) = (𝐺s 𝑁)
7069subgbas 18674 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
7168, 70syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 = (Base‘(𝐺s 𝑁)))
724ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑋 ∈ Fin)
732subgss 18671 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
7468, 73syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁𝑋)
7572, 74ssfid 8971 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
7671, 75eqeltrrd 2840 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (Base‘(𝐺s 𝑁)) ∈ Fin)
778ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl 𝐺))
78 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾𝑁)
7969subgslw 19136 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8068, 77, 78, 79syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
81 simplr 765 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl 𝐺))
8253ad2antlr 723 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (SubGrp‘𝐺))
8356, 2, 6ssnmz 18709 . . . . . . . . . . . . . . 15 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑁)
8482, 83syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠𝑁)
8569subgslw 19136 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ (𝑃 pSyl 𝐺) ∧ 𝑠𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8668, 81, 84, 85syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
872fvexi 6770 . . . . . . . . . . . . . . 15 𝑋 ∈ V
8856, 87rabex2 5253 . . . . . . . . . . . . . 14 𝑁 ∈ V
8969, 6ressplusg 16926 . . . . . . . . . . . . . 14 (𝑁 ∈ V → + = (+g‘(𝐺s 𝑁)))
9088, 89ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(𝐺s 𝑁))
91 eqid 2738 . . . . . . . . . . . . 13 (-g‘(𝐺s 𝑁)) = (-g‘(𝐺s 𝑁))
9265, 76, 80, 86, 90, 91sylow2 19146 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → ∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
9356, 2, 6, 69nmznsg 18711 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
9482, 93syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
95 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))
9665, 90, 91, 95conjnsg 18785 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
9794, 96sylan 579 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
98 eqeq2 2750 . . . . . . . . . . . . . 14 (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → (𝑠 = 𝐾𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))))
9997, 98syl5ibrcom 246 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
10099rexlimdva 3212 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
10192, 100mpd 15 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 = 𝐾)
102 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
10315ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾 ∈ (SubGrp‘𝐺))
104102, 103eqeltrd 2839 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
105104, 83syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠𝑁)
106102, 105eqsstrrd 3956 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾𝑁)
107101, 106impbida 797 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝐾𝑁𝑠 = 𝐾))
10862, 64, 1073bitr3d 308 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠𝑠 = 𝐾))
109108rabbidva 3402 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾})
110 rabsn 4654 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
1118, 110syl 17 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
112109, 111eqtrd 2778 . . . . . . 7 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝐾})
113112fveq2d 6760 . . . . . 6 (𝜑 → (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = (♯‘{𝐾}))
114 hashsng 14012 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → (♯‘{𝐾}) = 1)
1158, 114syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
116113, 115eqtrd 2778 . . . . 5 (𝜑 → (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = 1)
117116oveq2d 7271 . . . 4 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) − (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})) = ((♯‘(𝑃 pSyl 𝐺)) − 1))
11833, 117breqtrd 5096 . . 3 (𝜑𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − 1))
119 prmnn 16307 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1205, 119syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
121 hashcl 13999 . . . . . 6 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
12230, 121syl 17 . . . . 5 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
123122nn0zd 12353 . . . 4 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℤ)
124 1zzd 12281 . . . 4 (𝜑 → 1 ∈ ℤ)
125 moddvds 15902 . . . 4 ((𝑃 ∈ ℕ ∧ (♯‘(𝑃 pSyl 𝐺)) ∈ ℤ ∧ 1 ∈ ℤ) → (((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − 1)))
126120, 123, 124, 125syl3anc 1369 . . 3 (𝜑 → (((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − 1)))
127118, 126mpbird 256 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃))
128 prmuz2 16329 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
129 eluz2b2 12590 . . . 4 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
130 nnre 11910 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
131 1mod 13551 . . . . 5 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
132130, 131sylan 579 . . . 4 ((𝑃 ∈ ℕ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
133129, 132sylbi 216 . . 3 (𝑃 ∈ (ℤ‘2) → (1 mod 𝑃) = 1)
1345, 128, 1333syl 18 . 2 (𝜑 → (1 mod 𝑃) = 1)
135127, 134eqtrd 2778 1 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530  {csn 4558  {cpr 4560   class class class wbr 5070  {copab 5132  cmpt 5153  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  Fincfn 8691  cr 10801  1c1 10803   < clt 10940  cmin 11135  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511   mod cmo 13517  chash 13972  cdvds 15891  cprime 16304  Basecbs 16840  s cress 16867  +gcplusg 16888  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664  NrmSGrpcnsg 18665   pGrp cpgp 19049   pSyl cslw 19050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-prm 16305  df-pc 16466  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-nsg 18668  df-eqg 18669  df-ghm 18747  df-ga 18811  df-od 19051  df-pgp 19053  df-slw 19054
This theorem is referenced by:  sylow3  19153
  Copyright terms: Public domain W3C validator