MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylow3lem6 Structured version   Visualization version   GIF version

Theorem sylow3lem6 19500
Description: Lemma for sylow3 19501, second part. Using the lemma sylow2a 19487, show that the number of sylow subgroups is equivalent mod 𝑃 to the number of fixed points under the group action. But 𝐾 is the unique element of the set of Sylow subgroups that is fixed under the group action, so there is exactly one fixed point and so ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypotheses
Ref Expression
sylow3.x 𝑋 = (Base‘𝐺)
sylow3.g (𝜑𝐺 ∈ Grp)
sylow3.xf (𝜑𝑋 ∈ Fin)
sylow3.p (𝜑𝑃 ∈ ℙ)
sylow3lem5.a + = (+g𝐺)
sylow3lem5.d = (-g𝐺)
sylow3lem5.k (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
sylow3lem5.m = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
sylow3lem6.n 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
Assertion
Ref Expression
sylow3lem6 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Distinct variable groups:   𝑥,𝑦,𝑧,   𝑥,𝑠,𝑦,𝑧,   𝐾,𝑠,𝑥,𝑦,𝑧   𝑧,𝑁   𝑥,𝑋,𝑦,𝑧   𝐺,𝑠,𝑥,𝑦,𝑧   𝜑,𝑠,𝑥,𝑦,𝑧   𝑥, + ,𝑦,𝑧   𝑃,𝑠,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑠)   (𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑋(𝑠)

Proof of Theorem sylow3lem6
Dummy variables 𝑤 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . 5 (Base‘(𝐺s 𝐾)) = (Base‘(𝐺s 𝐾))
2 sylow3.x . . . . . 6 𝑋 = (Base‘𝐺)
3 sylow3.g . . . . . 6 (𝜑𝐺 ∈ Grp)
4 sylow3.xf . . . . . 6 (𝜑𝑋 ∈ Fin)
5 sylow3.p . . . . . 6 (𝜑𝑃 ∈ ℙ)
6 sylow3lem5.a . . . . . 6 + = (+g𝐺)
7 sylow3lem5.d . . . . . 6 = (-g𝐺)
8 sylow3lem5.k . . . . . 6 (𝜑𝐾 ∈ (𝑃 pSyl 𝐺))
9 sylow3lem5.m . . . . . 6 = (𝑥𝐾, 𝑦 ∈ (𝑃 pSyl 𝐺) ↦ ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)))
102, 3, 4, 5, 6, 7, 8, 9sylow3lem5 19499 . . . . 5 (𝜑 ∈ ((𝐺s 𝐾) GrpAct (𝑃 pSyl 𝐺)))
11 eqid 2733 . . . . . . 7 (𝐺s 𝐾) = (𝐺s 𝐾)
1211slwpgp 19481 . . . . . 6 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝑃 pGrp (𝐺s 𝐾))
138, 12syl 17 . . . . 5 (𝜑𝑃 pGrp (𝐺s 𝐾))
14 slwsubg 19478 . . . . . . . 8 (𝐾 ∈ (𝑃 pSyl 𝐺) → 𝐾 ∈ (SubGrp‘𝐺))
158, 14syl 17 . . . . . . 7 (𝜑𝐾 ∈ (SubGrp‘𝐺))
1611subgbas 19010 . . . . . . 7 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾 = (Base‘(𝐺s 𝐾)))
1715, 16syl 17 . . . . . 6 (𝜑𝐾 = (Base‘(𝐺s 𝐾)))
182subgss 19007 . . . . . . . 8 (𝐾 ∈ (SubGrp‘𝐺) → 𝐾𝑋)
1915, 18syl 17 . . . . . . 7 (𝜑𝐾𝑋)
204, 19ssfid 9267 . . . . . 6 (𝜑𝐾 ∈ Fin)
2117, 20eqeltrrd 2835 . . . . 5 (𝜑 → (Base‘(𝐺s 𝐾)) ∈ Fin)
22 pwfi 9178 . . . . . . 7 (𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin)
234, 22sylib 217 . . . . . 6 (𝜑 → 𝒫 𝑋 ∈ Fin)
24 slwsubg 19478 . . . . . . . 8 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ (SubGrp‘𝐺))
252subgss 19007 . . . . . . . . 9 (𝑥 ∈ (SubGrp‘𝐺) → 𝑥𝑋)
2624, 25syl 17 . . . . . . . 8 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥𝑋)
2724, 26elpwd 4609 . . . . . . 7 (𝑥 ∈ (𝑃 pSyl 𝐺) → 𝑥 ∈ 𝒫 𝑋)
2827ssriv 3987 . . . . . 6 (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋
29 ssfi 9173 . . . . . 6 ((𝒫 𝑋 ∈ Fin ∧ (𝑃 pSyl 𝐺) ⊆ 𝒫 𝑋) → (𝑃 pSyl 𝐺) ∈ Fin)
3023, 28, 29sylancl 587 . . . . 5 (𝜑 → (𝑃 pSyl 𝐺) ∈ Fin)
31 eqid 2733 . . . . 5 {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}
32 eqid 2733 . . . . 5 {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)} = {⟨𝑧, 𝑤⟩ ∣ ({𝑧, 𝑤} ⊆ (𝑃 pSyl 𝐺) ∧ ∃ ∈ (Base‘(𝐺s 𝐾))( 𝑧) = 𝑤)}
331, 10, 13, 21, 30, 31, 32sylow2a 19487 . . . 4 (𝜑𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})))
34 eqcom 2740 . . . . . . . . . . . . . 14 (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
3519adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾𝑋)
3635sselda 3983 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝑋)
3736biantrurd 534 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
3834, 37bitrid 283 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
39 simpr 486 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑔𝐾)
40 simplr 768 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (𝑃 pSyl 𝐺))
41 simpr 486 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑦 = 𝑠)
42 simpl 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑔𝑦 = 𝑠) → 𝑥 = 𝑔)
4342oveq1d 7424 . . . . . . . . . . . . . . . . . . 19 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑥 + 𝑧) = (𝑔 + 𝑧))
4443, 42oveq12d 7427 . . . . . . . . . . . . . . . . . 18 ((𝑥 = 𝑔𝑦 = 𝑠) → ((𝑥 + 𝑧) 𝑥) = ((𝑔 + 𝑧) 𝑔))
4541, 44mpteq12dv 5240 . . . . . . . . . . . . . . . . 17 ((𝑥 = 𝑔𝑦 = 𝑠) → (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
4645rneqd 5938 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑔𝑦 = 𝑠) → ran (𝑧𝑦 ↦ ((𝑥 + 𝑧) 𝑥)) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
47 vex 3479 . . . . . . . . . . . . . . . . . 18 𝑠 ∈ V
4847mptex 7225 . . . . . . . . . . . . . . . . 17 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
4948rnex 7903 . . . . . . . . . . . . . . . 16 ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) ∈ V
5046, 9, 49ovmpoa 7563 . . . . . . . . . . . . . . 15 ((𝑔𝐾𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5139, 40, 50syl2anc 585 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔 𝑠) = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))
5251eqeq1d 2735 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠 ↔ ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = 𝑠))
53 slwsubg 19478 . . . . . . . . . . . . . . 15 (𝑠 ∈ (𝑃 pSyl 𝐺) → 𝑠 ∈ (SubGrp‘𝐺))
5453ad2antlr 726 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
55 eqid 2733 . . . . . . . . . . . . . . 15 (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔))
56 sylow3lem6.n . . . . . . . . . . . . . . 15 𝑁 = {𝑥𝑋 ∣ ∀𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑠 ↔ (𝑦 + 𝑥) ∈ 𝑠)}
572, 6, 7, 55, 56conjnmzb 19127 . . . . . . . . . . . . . 14 (𝑠 ∈ (SubGrp‘𝐺) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
5854, 57syl 17 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → (𝑔𝑁 ↔ (𝑔𝑋𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧) 𝑔)))))
5938, 52, 583bitr4d 311 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑔𝐾) → ((𝑔 𝑠) = 𝑠𝑔𝑁))
6059ralbidva 3176 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔𝐾 𝑔𝑁))
61 dfss3 3971 . . . . . . . . . . 11 (𝐾𝑁 ↔ ∀𝑔𝐾 𝑔𝑁)
6260, 61bitr4di 289 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠𝐾𝑁))
6317adantr 482 . . . . . . . . . . 11 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → 𝐾 = (Base‘(𝐺s 𝐾)))
6463raleqdv 3326 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔𝐾 (𝑔 𝑠) = 𝑠 ↔ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠))
65 eqid 2733 . . . . . . . . . . . . 13 (Base‘(𝐺s 𝑁)) = (Base‘(𝐺s 𝑁))
663ad2antrr 725 . . . . . . . . . . . . . . . 16 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐺 ∈ Grp)
6756, 2, 6nmzsubg 19045 . . . . . . . . . . . . . . . 16 (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺))
6866, 67syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ (SubGrp‘𝐺))
69 eqid 2733 . . . . . . . . . . . . . . . 16 (𝐺s 𝑁) = (𝐺s 𝑁)
7069subgbas 19010 . . . . . . . . . . . . . . 15 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁 = (Base‘(𝐺s 𝑁)))
7168, 70syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 = (Base‘(𝐺s 𝑁)))
724ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑋 ∈ Fin)
732subgss 19007 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (SubGrp‘𝐺) → 𝑁𝑋)
7468, 73syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁𝑋)
7572, 74ssfid 9267 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑁 ∈ Fin)
7671, 75eqeltrrd 2835 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (Base‘(𝐺s 𝑁)) ∈ Fin)
778ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl 𝐺))
78 simpr 486 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾𝑁)
7969subgslw 19484 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝐾 ∈ (𝑃 pSyl 𝐺) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8068, 77, 78, 79syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝐾 ∈ (𝑃 pSyl (𝐺s 𝑁)))
81 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl 𝐺))
8253ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (SubGrp‘𝐺))
8356, 2, 6ssnmz 19046 . . . . . . . . . . . . . . 15 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠𝑁)
8482, 83syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠𝑁)
8569subgslw 19484 . . . . . . . . . . . . . 14 ((𝑁 ∈ (SubGrp‘𝐺) ∧ 𝑠 ∈ (𝑃 pSyl 𝐺) ∧ 𝑠𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
8668, 81, 84, 85syl3anc 1372 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (𝑃 pSyl (𝐺s 𝑁)))
872fvexi 6906 . . . . . . . . . . . . . . 15 𝑋 ∈ V
8856, 87rabex2 5335 . . . . . . . . . . . . . 14 𝑁 ∈ V
8969, 6ressplusg 17235 . . . . . . . . . . . . . 14 (𝑁 ∈ V → + = (+g‘(𝐺s 𝑁)))
9088, 89ax-mp 5 . . . . . . . . . . . . 13 + = (+g‘(𝐺s 𝑁))
91 eqid 2733 . . . . . . . . . . . . 13 (-g‘(𝐺s 𝑁)) = (-g‘(𝐺s 𝑁))
9265, 76, 80, 86, 90, 91sylow2 19494 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → ∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
9356, 2, 6, 69nmznsg 19048 . . . . . . . . . . . . . . . 16 (𝑠 ∈ (SubGrp‘𝐺) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
9482, 93syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)))
95 eqid 2733 . . . . . . . . . . . . . . . 16 (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) = (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))
9665, 90, 91, 95conjnsg 19128 . . . . . . . . . . . . . . 15 ((𝑠 ∈ (NrmSGrp‘(𝐺s 𝑁)) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
9794, 96sylan 581 . . . . . . . . . . . . . 14 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → 𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)))
98 eqeq2 2745 . . . . . . . . . . . . . 14 (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → (𝑠 = 𝐾𝑠 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔))))
9997, 98syl5ibrcom 246 . . . . . . . . . . . . 13 ((((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) ∧ 𝑔 ∈ (Base‘(𝐺s 𝑁))) → (𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
10099rexlimdva 3156 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → (∃𝑔 ∈ (Base‘(𝐺s 𝑁))𝐾 = ran (𝑧𝑠 ↦ ((𝑔 + 𝑧)(-g‘(𝐺s 𝑁))𝑔)) → 𝑠 = 𝐾))
10192, 100mpd 15 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝐾𝑁) → 𝑠 = 𝐾)
102 simpr 486 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 = 𝐾)
10315ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾 ∈ (SubGrp‘𝐺))
104102, 103eqeltrd 2834 . . . . . . . . . . . . 13 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠 ∈ (SubGrp‘𝐺))
105104, 83syl 17 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝑠𝑁)
106102, 105eqsstrrd 4022 . . . . . . . . . . 11 (((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) ∧ 𝑠 = 𝐾) → 𝐾𝑁)
107101, 106impbida 800 . . . . . . . . . 10 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (𝐾𝑁𝑠 = 𝐾))
10862, 64, 1073bitr3d 309 . . . . . . . . 9 ((𝜑𝑠 ∈ (𝑃 pSyl 𝐺)) → (∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠𝑠 = 𝐾))
109108rabbidva 3440 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾})
110 rabsn 4726 . . . . . . . . 9 (𝐾 ∈ (𝑃 pSyl 𝐺) → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
1118, 110syl 17 . . . . . . . 8 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ 𝑠 = 𝐾} = {𝐾})
112109, 111eqtrd 2773 . . . . . . 7 (𝜑 → {𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠} = {𝐾})
113112fveq2d 6896 . . . . . 6 (𝜑 → (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = (♯‘{𝐾}))
114 hashsng 14329 . . . . . . 7 (𝐾 ∈ (𝑃 pSyl 𝐺) → (♯‘{𝐾}) = 1)
1158, 114syl 17 . . . . . 6 (𝜑 → (♯‘{𝐾}) = 1)
116113, 115eqtrd 2773 . . . . 5 (𝜑 → (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠}) = 1)
117116oveq2d 7425 . . . 4 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) − (♯‘{𝑠 ∈ (𝑃 pSyl 𝐺) ∣ ∀𝑔 ∈ (Base‘(𝐺s 𝐾))(𝑔 𝑠) = 𝑠})) = ((♯‘(𝑃 pSyl 𝐺)) − 1))
11833, 117breqtrd 5175 . . 3 (𝜑𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − 1))
119 prmnn 16611 . . . . 5 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1205, 119syl 17 . . . 4 (𝜑𝑃 ∈ ℕ)
121 hashcl 14316 . . . . . 6 ((𝑃 pSyl 𝐺) ∈ Fin → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
12230, 121syl 17 . . . . 5 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℕ0)
123122nn0zd 12584 . . . 4 (𝜑 → (♯‘(𝑃 pSyl 𝐺)) ∈ ℤ)
124 1zzd 12593 . . . 4 (𝜑 → 1 ∈ ℤ)
125 moddvds 16208 . . . 4 ((𝑃 ∈ ℕ ∧ (♯‘(𝑃 pSyl 𝐺)) ∈ ℤ ∧ 1 ∈ ℤ) → (((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − 1)))
126120, 123, 124, 125syl3anc 1372 . . 3 (𝜑 → (((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((♯‘(𝑃 pSyl 𝐺)) − 1)))
127118, 126mpbird 257 . 2 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = (1 mod 𝑃))
128 prmuz2 16633 . . 3 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
129 eluz2b2 12905 . . . 4 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
130 nnre 12219 . . . . 5 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ)
131 1mod 13868 . . . . 5 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
132130, 131sylan 581 . . . 4 ((𝑃 ∈ ℕ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
133129, 132sylbi 216 . . 3 (𝑃 ∈ (ℤ‘2) → (1 mod 𝑃) = 1)
1345, 128, 1333syl 18 . 2 (𝜑 → (1 mod 𝑃) = 1)
135127, 134eqtrd 2773 1 (𝜑 → ((♯‘(𝑃 pSyl 𝐺)) mod 𝑃) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  wss 3949  𝒫 cpw 4603  {csn 4629  {cpr 4631   class class class wbr 5149  {copab 5211  cmpt 5232  ran crn 5678  cfv 6544  (class class class)co 7409  cmpo 7411  Fincfn 8939  cr 11109  1c1 11111   < clt 11248  cmin 11444  cn 12212  2c2 12267  0cn0 12472  cz 12558  cuz 12822   mod cmo 13834  chash 14290  cdvds 16197  cprime 16608  Basecbs 17144  s cress 17173  +gcplusg 17197  Grpcgrp 18819  -gcsg 18821  SubGrpcsubg 19000  NrmSGrpcnsg 19001   pGrp cpgp 19394   pSyl cslw 19395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-disj 5115  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-oadd 8470  df-omul 8471  df-er 8703  df-ec 8705  df-qs 8709  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-oi 9505  df-dju 9896  df-card 9934  df-acn 9937  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-n0 12473  df-xnn0 12545  df-z 12559  df-uz 12823  df-q 12933  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-clim 15432  df-sum 15633  df-dvds 16198  df-gcd 16436  df-prm 16609  df-pc 16770  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-nsg 19004  df-eqg 19005  df-ghm 19090  df-ga 19154  df-od 19396  df-pgp 19398  df-slw 19399
This theorem is referenced by:  sylow3  19501
  Copyright terms: Public domain W3C validator