|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cshwsexa | Structured version Visualization version GIF version | ||
| Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| cshwsexa | ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqcom 2744 | . . . . 5 ⊢ ((𝑊 cyclShift 𝑛) = 𝑤 ↔ 𝑤 = (𝑊 cyclShift 𝑛)) | |
| 2 | 1 | rexbii 3094 | . . . 4 ⊢ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)) | 
| 3 | 2 | abbii 2809 | . . 3 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} | 
| 4 | ovex 7464 | . . . 4 ⊢ (0..^(♯‘𝑊)) ∈ V | |
| 5 | 4 | abrexex 7987 | . . 3 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} ∈ V | 
| 6 | 3, 5 | eqeltri 2837 | . 2 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | 
| 7 | rabssab 4085 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⊆ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
| 8 | 6, 7 | ssexi 5322 | 1 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 {cab 2714 ∃wrex 3070 {crab 3436 Vcvv 3480 ‘cfv 6561 (class class class)co 7431 0cc0 11155 ..^cfzo 13694 ♯chash 14369 Word cword 14552 cyclShift ccsh 14826 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2540 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-sn 4627 df-pr 4629 df-uni 4908 df-iota 6514 df-fv 6569 df-ov 7434 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |