MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsexa Structured version   Visualization version   GIF version

Theorem cshwsexa 14773
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.)
Assertion
Ref Expression
cshwsexa {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Distinct variable group:   𝑛,𝑊,𝑤
Allowed substitution hints:   𝑉(𝑤,𝑛)

Proof of Theorem cshwsexa
StepHypRef Expression
1 eqcom 2739 . . . . 5 ((𝑊 cyclShift 𝑛) = 𝑤𝑤 = (𝑊 cyclShift 𝑛))
21rexbii 3094 . . . 4 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛))
32abbii 2802 . . 3 {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)}
4 ovex 7441 . . . 4 (0..^(♯‘𝑊)) ∈ V
54abrexex 7948 . . 3 {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} ∈ V
63, 5eqeltri 2829 . 2 {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
7 rabssab 4083 . 2 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⊆ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
86, 7ssexi 5322 1 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  {cab 2709  wrex 3070  {crab 3432  Vcvv 3474  cfv 6543  (class class class)co 7408  0cc0 11109  ..^cfzo 13626  chash 14289  Word cword 14463   cyclShift ccsh 14737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-iota 6495  df-fv 6551  df-ov 7411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator