| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cshwsexa | Structured version Visualization version GIF version | ||
| Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.) (Proof shortened by SN, 15-Jan-2025.) |
| Ref | Expression |
|---|---|
| cshwsexa | ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2736 | . . . . 5 ⊢ ((𝑊 cyclShift 𝑛) = 𝑤 ↔ 𝑤 = (𝑊 cyclShift 𝑛)) | |
| 2 | 1 | rexbii 3076 | . . . 4 ⊢ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)) |
| 3 | 2 | abbii 2796 | . . 3 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} |
| 4 | ovex 7402 | . . . 4 ⊢ (0..^(♯‘𝑊)) ∈ V | |
| 5 | 4 | abrexex 7920 | . . 3 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))𝑤 = (𝑊 cyclShift 𝑛)} ∈ V |
| 6 | 3, 5 | eqeltri 2824 | . 2 ⊢ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |
| 7 | rabssab 4044 | . 2 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ⊆ {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} | |
| 8 | 6, 7 | ssexi 5272 | 1 ⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 {crab 3402 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 0cc0 11044 ..^cfzo 13591 ♯chash 14271 Word cword 14454 cyclShift ccsh 14729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-sn 4586 df-pr 4588 df-uni 4868 df-iota 6452 df-fv 6507 df-ov 7372 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |