Step | Hyp | Ref
| Expression |
1 | | df-rab 3287 |
. . 3
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} |
2 | | r19.42v 3184 |
. . . . 5
⊢
(∃𝑛 ∈
(0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)) |
3 | 2 | bicomi 223 |
. . . 4
⊢ ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)) |
4 | 3 | abbii 2806 |
. . 3
⊢ {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} |
5 | | df-rex 3072 |
. . . 4
⊢
(∃𝑛 ∈
(0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))) |
6 | 5 | abbii 2806 |
. . 3
⊢ {𝑤 ∣ ∃𝑛 ∈
(0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} |
7 | 1, 4, 6 | 3eqtri 2768 |
. 2
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} |
8 | | abid2 2880 |
. . . 4
⊢ {𝑛 ∣ 𝑛 ∈ (0..^(♯‘𝑊))} = (0..^(♯‘𝑊)) |
9 | 8 | ovexi 7341 |
. . 3
⊢ {𝑛 ∣ 𝑛 ∈ (0..^(♯‘𝑊))} ∈ V |
10 | | tru 1543 |
. . . . 5
⊢
⊤ |
11 | 10, 10 | pm3.2i 472 |
. . . 4
⊢ (⊤
∧ ⊤) |
12 | | ovexd 7342 |
. . . . . 6
⊢ (⊤
→ (𝑊 cyclShift 𝑛) ∈ V) |
13 | | eqtr3 2762 |
. . . . . . . . . . . . 13
⊢ ((𝑤 = (𝑊 cyclShift 𝑛) ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → 𝑤 = 𝑦) |
14 | 13 | ex 414 |
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑊 cyclShift 𝑛) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦)) |
15 | 14 | eqcoms 2744 |
. . . . . . . . . . 11
⊢ ((𝑊 cyclShift 𝑛) = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦)) |
16 | 15 | adantl 483 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦)) |
17 | 16 | com12 32 |
. . . . . . . . 9
⊢ (𝑦 = (𝑊 cyclShift 𝑛) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
18 | 17 | ad2antlr 725 |
. . . . . . . 8
⊢
(((⊤ ∧ 𝑦
= (𝑊 cyclShift 𝑛)) ∧ ⊤) →
((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
19 | 18 | alrimiv 1928 |
. . . . . . 7
⊢
(((⊤ ∧ 𝑦
= (𝑊 cyclShift 𝑛)) ∧ ⊤) →
∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
20 | 19 | ex 414 |
. . . . . 6
⊢
((⊤ ∧ 𝑦 =
(𝑊 cyclShift 𝑛)) → (⊤ →
∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))) |
21 | 12, 20 | spcimedv 3539 |
. . . . 5
⊢ (⊤
→ (⊤ → ∃𝑦∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))) |
22 | 21 | imp 408 |
. . . 4
⊢
((⊤ ∧ ⊤) → ∃𝑦∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
23 | 11, 22 | mp1i 13 |
. . 3
⊢ (𝑛 ∈
(0..^(♯‘𝑊))
→ ∃𝑦∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)) |
24 | 9, 23 | zfrep4 5229 |
. 2
⊢ {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} ∈ V |
25 | 7, 24 | eqeltri 2833 |
1
⊢ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V |