MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsexa Structured version   Visualization version   GIF version

Theorem cshwsexa 14177
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.)
Assertion
Ref Expression
cshwsexa {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Distinct variable groups:   𝑛,𝑉   𝑛,𝑊,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem cshwsexa
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3115 . . 3 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)}
2 r19.42v 3303 . . . . 5 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
32bicomi 227 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))
43abbii 2863 . . 3 {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)}
5 df-rex 3112 . . . 4 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)))
65abbii 2863 . . 3 {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))}
71, 4, 63eqtri 2825 . 2 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))}
8 abid2 2932 . . . 4 {𝑛𝑛 ∈ (0..^(♯‘𝑊))} = (0..^(♯‘𝑊))
98ovexi 7169 . . 3 {𝑛𝑛 ∈ (0..^(♯‘𝑊))} ∈ V
10 tru 1542 . . . . 5
1110, 10pm3.2i 474 . . . 4 (⊤ ∧ ⊤)
12 ovexd 7170 . . . . . 6 (⊤ → (𝑊 cyclShift 𝑛) ∈ V)
13 eqtr3 2820 . . . . . . . . . . . . 13 ((𝑤 = (𝑊 cyclShift 𝑛) ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → 𝑤 = 𝑦)
1413ex 416 . . . . . . . . . . . 12 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1514eqcoms 2806 . . . . . . . . . . 11 ((𝑊 cyclShift 𝑛) = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1615adantl 485 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1716com12 32 . . . . . . . . 9 (𝑦 = (𝑊 cyclShift 𝑛) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
1817ad2antlr 726 . . . . . . . 8 (((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) ∧ ⊤) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
1918alrimiv 1928 . . . . . . 7 (((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) ∧ ⊤) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2019ex 416 . . . . . 6 ((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → (⊤ → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)))
2112, 20spcimedv 3542 . . . . 5 (⊤ → (⊤ → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)))
2221imp 410 . . . 4 ((⊤ ∧ ⊤) → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2311, 22mp1i 13 . . 3 (𝑛 ∈ (0..^(♯‘𝑊)) → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
249, 23zfrep4 5164 . 2 {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} ∈ V
257, 24eqeltri 2886 1 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wtru 1539  wex 1781  wcel 2111  {cab 2776  wrex 3107  {crab 3110  Vcvv 3441  cfv 6324  (class class class)co 7135  0cc0 10526  ..^cfzo 13028  chash 13686  Word cword 13857   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-nul 5174
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-sn 4526  df-pr 4528  df-uni 4801  df-iota 6283  df-fv 6332  df-ov 7138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator