MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwsexa Structured version   Visualization version   GIF version

Theorem cshwsexa 14354
Description: The class of (different!) words resulting by cyclically shifting something (not necessarily a word) is a set. (Contributed by AV, 8-Jun-2018.) (Revised by Mario Carneiro/AV, 25-Oct-2018.)
Assertion
Ref Expression
cshwsexa {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Distinct variable groups:   𝑛,𝑉   𝑛,𝑊,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem cshwsexa
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3060 . . 3 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)}
2 r19.42v 3253 . . . . 5 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
32bicomi 227 . . . 4 ((𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))
43abbii 2801 . . 3 {𝑤 ∣ (𝑤 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)}
5 df-rex 3057 . . . 4 (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) ↔ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)))
65abbii 2801 . . 3 {𝑤 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤)} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))}
71, 4, 63eqtri 2763 . 2 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))}
8 abid2 2872 . . . 4 {𝑛𝑛 ∈ (0..^(♯‘𝑊))} = (0..^(♯‘𝑊))
98ovexi 7225 . . 3 {𝑛𝑛 ∈ (0..^(♯‘𝑊))} ∈ V
10 tru 1547 . . . . 5
1110, 10pm3.2i 474 . . . 4 (⊤ ∧ ⊤)
12 ovexd 7226 . . . . . 6 (⊤ → (𝑊 cyclShift 𝑛) ∈ V)
13 eqtr3 2758 . . . . . . . . . . . . 13 ((𝑤 = (𝑊 cyclShift 𝑛) ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → 𝑤 = 𝑦)
1413ex 416 . . . . . . . . . . . 12 (𝑤 = (𝑊 cyclShift 𝑛) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1514eqcoms 2744 . . . . . . . . . . 11 ((𝑊 cyclShift 𝑛) = 𝑤 → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1615adantl 485 . . . . . . . . . 10 ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → (𝑦 = (𝑊 cyclShift 𝑛) → 𝑤 = 𝑦))
1716com12 32 . . . . . . . . 9 (𝑦 = (𝑊 cyclShift 𝑛) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
1817ad2antlr 727 . . . . . . . 8 (((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) ∧ ⊤) → ((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
1918alrimiv 1935 . . . . . . 7 (((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) ∧ ⊤) → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2019ex 416 . . . . . 6 ((⊤ ∧ 𝑦 = (𝑊 cyclShift 𝑛)) → (⊤ → ∀𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)))
2112, 20spcimedv 3500 . . . . 5 (⊤ → (⊤ → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦)))
2221imp 410 . . . 4 ((⊤ ∧ ⊤) → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
2311, 22mp1i 13 . . 3 (𝑛 ∈ (0..^(♯‘𝑊)) → ∃𝑦𝑤((𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤) → 𝑤 = 𝑦))
249, 23zfrep4 5174 . 2 {𝑤 ∣ ∃𝑛(𝑛 ∈ (0..^(♯‘𝑊)) ∧ (𝑤 ∈ Word 𝑉 ∧ (𝑊 cyclShift 𝑛) = 𝑤))} ∈ V
257, 24eqeltri 2827 1 {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541   = wceq 1543  wtru 1544  wex 1787  wcel 2112  {cab 2714  wrex 3052  {crab 3055  Vcvv 3398  cfv 6358  (class class class)co 7191  0cc0 10694  ..^cfzo 13203  chash 13861  Word cword 14034   cyclShift ccsh 14318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-nul 5184
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528  df-pr 4530  df-uni 4806  df-iota 6316  df-fv 6366  df-ov 7194
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator