MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5563
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5489 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 223 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32abbi2i 2878 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3426 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2836 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4014 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5241 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3075 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5536 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 230 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2715  wral 3063  {crab 3067  Vcvv 3422   class class class wbr 5070   E cep 5485   Se wse 5533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-se 5536
This theorem is referenced by:  omsinds  7708  omsindsOLD  7709  tfr1ALT  8202  tfr2ALT  8203  tfr3ALT  8204  oieu  9228  oismo  9229  oiid  9230  cantnfp1lem3  9368  r0weon  9699  hsmexlem1  10113  on2recsfn  33753  on2recsov  33754  on2ind  33755  on3ind  33756
  Copyright terms: Public domain W3C validator