![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version |
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
epse | ⊢ E Se 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5592 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
2 | 1 | bicomi 224 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
3 | 2 | eqabi 2875 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
4 | vex 3482 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | eqeltrri 2836 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
6 | rabssab 4095 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
7 | 5, 6 | ssexi 5328 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
8 | 7 | rgenw 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
9 | df-se 5642 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
10 | 8, 9 | mpbir 231 | 1 ⊢ E Se 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {cab 2712 ∀wral 3059 {crab 3433 Vcvv 3478 class class class wbr 5148 E cep 5588 Se wse 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-eprel 5589 df-se 5642 |
This theorem is referenced by: omsinds 7908 omsindsOLD 7909 tfr1ALT 8439 tfr2ALT 8440 tfr3ALT 8441 on2recsfn 8704 on2recsov 8705 on2ind 8706 on3ind 8707 oieu 9577 oismo 9578 oiid 9579 cantnfp1lem3 9718 r0weon 10050 hsmexlem1 10464 |
Copyright terms: Public domain | W3C validator |