![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version |
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
epse | ⊢ E Se 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5584 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
2 | 1 | bicomi 223 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
3 | 2 | eqabi 2870 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
4 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | eqeltrri 2831 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
6 | rabssab 4084 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
7 | 5, 6 | ssexi 5323 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
8 | 7 | rgenw 3066 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
9 | df-se 5633 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ E Se 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 {cab 2710 ∀wral 3062 {crab 3433 Vcvv 3475 class class class wbr 5149 E cep 5580 Se wse 5630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-eprel 5581 df-se 5633 |
This theorem is referenced by: omsinds 7876 omsindsOLD 7877 tfr1ALT 8400 tfr2ALT 8401 tfr3ALT 8402 on2recsfn 8666 on2recsov 8667 on2ind 8668 on3ind 8669 oieu 9534 oismo 9535 oiid 9536 cantnfp1lem3 9675 r0weon 10007 hsmexlem1 10421 |
Copyright terms: Public domain | W3C validator |