| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version | ||
| Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| epse | ⊢ E Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5556 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 2 | 1 | bicomi 224 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
| 3 | 2 | eqabi 2870 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
| 4 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | eqeltrri 2831 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
| 6 | rabssab 4060 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
| 7 | 5, 6 | ssexi 5292 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 8 | 7 | rgenw 3055 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 9 | df-se 5607 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ E Se 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {cab 2713 ∀wral 3051 {crab 3415 Vcvv 3459 class class class wbr 5119 E cep 5552 Se wse 5604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-eprel 5553 df-se 5607 |
| This theorem is referenced by: omsinds 7882 tfr1ALT 8414 tfr2ALT 8415 tfr3ALT 8416 on2recsfn 8679 on2recsov 8680 on2ind 8681 on3ind 8682 oieu 9553 oismo 9554 oiid 9555 cantnfp1lem3 9694 r0weon 10026 hsmexlem1 10440 onsse 28223 trfr 44987 |
| Copyright terms: Public domain | W3C validator |