| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version | ||
| Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| epse | ⊢ E Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5526 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 2 | 1 | bicomi 224 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
| 3 | 2 | eqabi 2863 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
| 4 | vex 3442 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | eqeltrri 2825 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
| 6 | rabssab 4038 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
| 7 | 5, 6 | ssexi 5264 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 8 | 7 | rgenw 3048 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 9 | df-se 5577 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ E Se 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3396 Vcvv 3438 class class class wbr 5095 E cep 5522 Se wse 5574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-eprel 5523 df-se 5577 |
| This theorem is referenced by: omsinds 7827 tfr1ALT 8329 tfr2ALT 8330 tfr3ALT 8331 on2recsfn 8592 on2recsov 8593 on2ind 8594 on3ind 8595 oieu 9450 oismo 9451 oiid 9452 cantnfp1lem3 9595 r0weon 9925 hsmexlem1 10339 onsse 28194 trfr 44936 |
| Copyright terms: Public domain | W3C validator |