MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5605
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5526 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 224 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32eqabi 2863 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3442 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2825 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4038 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5264 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3048 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5577 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 231 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2707  wral 3044  {crab 3396  Vcvv 3438   class class class wbr 5095   E cep 5522   Se wse 5574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-eprel 5523  df-se 5577
This theorem is referenced by:  omsinds  7827  tfr1ALT  8329  tfr2ALT  8330  tfr3ALT  8331  on2recsfn  8592  on2recsov  8593  on2ind  8594  on3ind  8595  oieu  9450  oismo  9451  oiid  9452  cantnfp1lem3  9595  r0weon  9925  hsmexlem1  10339  onsse  28194  trfr  44936
  Copyright terms: Public domain W3C validator