| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version | ||
| Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| epse | ⊢ E Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5544 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 2 | 1 | bicomi 224 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
| 3 | 2 | eqabi 2864 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
| 4 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | eqeltrri 2826 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
| 6 | rabssab 4051 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
| 7 | 5, 6 | ssexi 5280 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 8 | 7 | rgenw 3049 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 9 | df-se 5595 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ E Se 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2708 ∀wral 3045 {crab 3408 Vcvv 3450 class class class wbr 5110 E cep 5540 Se wse 5592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-eprel 5541 df-se 5595 |
| This theorem is referenced by: omsinds 7866 tfr1ALT 8371 tfr2ALT 8372 tfr3ALT 8373 on2recsfn 8634 on2recsov 8635 on2ind 8636 on3ind 8637 oieu 9499 oismo 9500 oiid 9501 cantnfp1lem3 9640 r0weon 9972 hsmexlem1 10386 onsse 28178 trfr 44959 |
| Copyright terms: Public domain | W3C validator |