MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5682
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5602 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 224 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32eqabi 2880 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3492 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2841 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4108 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5340 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3071 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5653 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 231 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2717  wral 3067  {crab 3443  Vcvv 3488   class class class wbr 5166   E cep 5598   Se wse 5650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-eprel 5599  df-se 5653
This theorem is referenced by:  omsinds  7924  omsindsOLD  7925  tfr1ALT  8456  tfr2ALT  8457  tfr3ALT  8458  on2recsfn  8723  on2recsov  8724  on2ind  8725  on3ind  8726  oieu  9608  oismo  9609  oiid  9610  cantnfp1lem3  9749  r0weon  10081  hsmexlem1  10495
  Copyright terms: Public domain W3C validator