MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5636
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5556 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 224 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32eqabi 2870 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3463 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2831 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4060 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5292 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3055 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5607 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 231 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2713  wral 3051  {crab 3415  Vcvv 3459   class class class wbr 5119   E cep 5552   Se wse 5604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553  df-se 5607
This theorem is referenced by:  omsinds  7880  tfr1ALT  8412  tfr2ALT  8413  tfr3ALT  8414  on2recsfn  8677  on2recsov  8678  on2ind  8679  on3ind  8680  oieu  9551  oismo  9552  oiid  9553  cantnfp1lem3  9692  r0weon  10024  hsmexlem1  10438  trfr  44935
  Copyright terms: Public domain W3C validator