MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5623
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5544 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 224 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32eqabi 2864 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3454 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2826 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4051 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5280 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3049 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5595 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 231 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2708  wral 3045  {crab 3408  Vcvv 3450   class class class wbr 5110   E cep 5540   Se wse 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-se 5595
This theorem is referenced by:  omsinds  7866  tfr1ALT  8371  tfr2ALT  8372  tfr3ALT  8373  on2recsfn  8634  on2recsov  8635  on2ind  8636  on3ind  8637  oieu  9499  oismo  9500  oiid  9501  cantnfp1lem3  9640  r0weon  9972  hsmexlem1  10386  onsse  28178  trfr  44959
  Copyright terms: Public domain W3C validator