| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version | ||
| Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| epse | ⊢ E Se 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epel 5587 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
| 2 | 1 | bicomi 224 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
| 3 | 2 | eqabi 2877 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
| 4 | vex 3484 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | eqeltrri 2838 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
| 6 | rabssab 4085 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
| 7 | 5, 6 | ssexi 5322 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 8 | 7 | rgenw 3065 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
| 9 | df-se 5638 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
| 10 | 8, 9 | mpbir 231 | 1 ⊢ E Se 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {cab 2714 ∀wral 3061 {crab 3436 Vcvv 3480 class class class wbr 5143 E cep 5583 Se wse 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 df-se 5638 |
| This theorem is referenced by: omsinds 7908 tfr1ALT 8440 tfr2ALT 8441 tfr3ALT 8442 on2recsfn 8705 on2recsov 8706 on2ind 8707 on3ind 8708 oieu 9579 oismo 9580 oiid 9581 cantnfp1lem3 9720 r0weon 10052 hsmexlem1 10466 trfr 44979 |
| Copyright terms: Public domain | W3C validator |