MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5598
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5519 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 224 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32eqabi 2866 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3440 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2828 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4035 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5260 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3051 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5570 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 231 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {cab 2709  wral 3047  {crab 3395  Vcvv 3436   class class class wbr 5091   E cep 5515   Se wse 5567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-eprel 5516  df-se 5570
This theorem is referenced by:  omsinds  7817  tfr1ALT  8319  tfr2ALT  8320  tfr3ALT  8321  on2recsfn  8582  on2recsov  8583  on2ind  8584  on3ind  8585  oieu  9425  oismo  9426  oiid  9427  cantnfp1lem3  9570  r0weon  9900  hsmexlem1  10314  onsse  28205  trfr  44994
  Copyright terms: Public domain W3C validator