MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epse Structured version   Visualization version   GIF version

Theorem epse 5660
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
epse E Se 𝐴

Proof of Theorem epse
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 epel 5584 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
21bicomi 223 . . . . . 6 (𝑦𝑥𝑦 E 𝑥)
32eqabi 2870 . . . . 5 𝑥 = {𝑦𝑦 E 𝑥}
4 vex 3479 . . . . 5 𝑥 ∈ V
53, 4eqeltrri 2831 . . . 4 {𝑦𝑦 E 𝑥} ∈ V
6 rabssab 4084 . . . 4 {𝑦𝐴𝑦 E 𝑥} ⊆ {𝑦𝑦 E 𝑥}
75, 6ssexi 5323 . . 3 {𝑦𝐴𝑦 E 𝑥} ∈ V
87rgenw 3066 . 2 𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V
9 df-se 5633 . 2 ( E Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦 E 𝑥} ∈ V)
108, 9mpbir 230 1 E Se 𝐴
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  {cab 2710  wral 3062  {crab 3433  Vcvv 3475   class class class wbr 5149   E cep 5580   Se wse 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-eprel 5581  df-se 5633
This theorem is referenced by:  omsinds  7876  omsindsOLD  7877  tfr1ALT  8400  tfr2ALT  8401  tfr3ALT  8402  on2recsfn  8666  on2recsov  8667  on2ind  8668  on3ind  8669  oieu  9534  oismo  9535  oiid  9536  cantnfp1lem3  9675  r0weon  10007  hsmexlem1  10421
  Copyright terms: Public domain W3C validator