Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epse | Structured version Visualization version GIF version |
Description: The membership relation is set-like on any class. (This is the origin of the term "set-like": a set-like relation "acts like" the membership relation of sets and their elements.) (Contributed by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
epse | ⊢ E Se 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epel 5489 | . . . . . . 7 ⊢ (𝑦 E 𝑥 ↔ 𝑦 ∈ 𝑥) | |
2 | 1 | bicomi 223 | . . . . . 6 ⊢ (𝑦 ∈ 𝑥 ↔ 𝑦 E 𝑥) |
3 | 2 | abbi2i 2878 | . . . . 5 ⊢ 𝑥 = {𝑦 ∣ 𝑦 E 𝑥} |
4 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | eqeltrri 2836 | . . . 4 ⊢ {𝑦 ∣ 𝑦 E 𝑥} ∈ V |
6 | rabssab 4014 | . . . 4 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ⊆ {𝑦 ∣ 𝑦 E 𝑥} | |
7 | 5, 6 | ssexi 5241 | . . 3 ⊢ {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
8 | 7 | rgenw 3075 | . 2 ⊢ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V |
9 | df-se 5536 | . 2 ⊢ ( E Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦 E 𝑥} ∈ V) | |
10 | 8, 9 | mpbir 230 | 1 ⊢ E Se 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2715 ∀wral 3063 {crab 3067 Vcvv 3422 class class class wbr 5070 E cep 5485 Se wse 5533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-se 5536 |
This theorem is referenced by: omsinds 7708 omsindsOLD 7709 tfr1ALT 8202 tfr2ALT 8203 tfr3ALT 8204 oieu 9228 oismo 9229 oiid 9230 cantnfp1lem3 9368 r0weon 9699 hsmexlem1 10113 on2recsfn 33753 on2recsov 33754 on2ind 33755 on3ind 33756 |
Copyright terms: Public domain | W3C validator |