Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxyelqirr Structured version   Visualization version   GIF version

Theorem rmxyelqirr 42883
Description: The solutions used to construct the X and Y sequences are quadratic irrationals. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by SN, 23-Dec-2024.)
Assertion
Ref Expression
rmxyelqirr ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Distinct variable groups:   𝐴,𝑎,𝑐,𝑑   𝑁,𝑎
Allowed substitution hints:   𝑁(𝑐,𝑑)

Proof of Theorem rmxyelqirr
StepHypRef Expression
1 rmspecnonsq 42880 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
21adantr 480 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN))
3 pell14qrval 42821 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (Pell14QR‘((𝐴↑2) − 1)) = {𝑎 ∈ ℝ ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1)})
42, 3syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (Pell14QR‘((𝐴↑2) − 1)) = {𝑎 ∈ ℝ ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1)})
5 rabssab 4036 . . . 4 {𝑎 ∈ ℝ ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1)} ⊆ {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1)}
6 simpl 482 . . . . . . 7 ((𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1) → 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
76reximi 3067 . . . . . 6 (∃𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1) → ∃𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
87reximi 3067 . . . . 5 (∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1) → ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)))
98ss2abi 4019 . . . 4 {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1)} ⊆ {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}
105, 9sstri 3945 . . 3 {𝑎 ∈ ℝ ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ (𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑)) ∧ ((𝑐↑2) − (((𝐴↑2) − 1) · (𝑑↑2))) = 1)} ⊆ {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))}
114, 10eqsstrdi 3980 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (Pell14QR‘((𝐴↑2) − 1)) ⊆ {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
12 simpr 484 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
13 rmspecfund 42882 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
1413adantr 480 . . . . . 6 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (PellFund‘((𝐴↑2) − 1)) = (𝐴 + (√‘((𝐴↑2) − 1))))
1514eqcomd 2735 . . . . 5 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (𝐴 + (√‘((𝐴↑2) − 1))) = (PellFund‘((𝐴↑2) − 1)))
1615oveq1d 7364 . . . 4 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) = ((PellFund‘((𝐴↑2) − 1))↑𝑁))
17 oveq2 7357 . . . . 5 (𝑎 = 𝑁 → ((PellFund‘((𝐴↑2) − 1))↑𝑎) = ((PellFund‘((𝐴↑2) − 1))↑𝑁))
1817rspceeqv 3600 . . . 4 ((𝑁 ∈ ℤ ∧ ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) = ((PellFund‘((𝐴↑2) − 1))↑𝑁)) → ∃𝑎 ∈ ℤ ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) = ((PellFund‘((𝐴↑2) − 1))↑𝑎))
1912, 16, 18syl2anc 584 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ∃𝑎 ∈ ℤ ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) = ((PellFund‘((𝐴↑2) − 1))↑𝑎))
20 pellfund14b 42872 . . . 4 (((𝐴↑2) − 1) ∈ (ℕ ∖ ◻NN) → (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑎 ∈ ℤ ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) = ((PellFund‘((𝐴↑2) − 1))↑𝑎)))
212, 20syl 17 . . 3 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → (((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ (Pell14QR‘((𝐴↑2) − 1)) ↔ ∃𝑎 ∈ ℤ ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) = ((PellFund‘((𝐴↑2) − 1))↑𝑎)))
2219, 21mpbird 257 . 2 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ (Pell14QR‘((𝐴↑2) − 1)))
2311, 22sseldd 3936 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℤ) → ((𝐴 + (√‘((𝐴↑2) − 1)))↑𝑁) ∈ {𝑎 ∣ ∃𝑐 ∈ ℕ0𝑑 ∈ ℤ 𝑎 = (𝑐 + ((√‘((𝐴↑2) − 1)) · 𝑑))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  {crab 3394  cdif 3900  cfv 6482  (class class class)co 7349  cr 11008  1c1 11010   + caddc 11012   · cmul 11014  cmin 11347  cn 12128  2c2 12183  0cn0 12384  cz 12471  cuz 12735  cexp 13968  csqrt 15140  NNcsquarenn 42809  Pell14QRcpell14qr 42812  PellFundcpellfund 42813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-pi 15979  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766  df-log 26463  df-squarenn 42814  df-pell1qr 42815  df-pell14qr 42816  df-pell1234qr 42817  df-pellfund 42818
This theorem is referenced by:  rmxyelxp  42885  rmxyval  42888
  Copyright terms: Public domain W3C validator