Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfmpn Structured version   Visualization version   GIF version

Theorem ballotlemfmpn 34497
Description: (𝐹𝐶) finishes counting at (𝑀𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfmpn (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfmpn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 nnaddcl 12289 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
81, 2, 7mp2an 692 . . . . 5 (𝑀 + 𝑁) ∈ ℕ
98nnzi 12641 . . . 4 (𝑀 + 𝑁) ∈ ℤ
109a1i 11 . . 3 (𝐶𝑂 → (𝑀 + 𝑁) ∈ ℤ)
111, 2, 3, 4, 5, 6, 10ballotlemfval 34492 . 2 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))))
12 ssrab2 4080 . . . . . . . . 9 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
133, 12eqsstri 4030 . . . . . . . 8 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
1413sseli 3979 . . . . . . 7 (𝐶𝑂𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)))
1514elpwid 4609 . . . . . 6 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
16 sseqin2 4223 . . . . . 6 (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1715, 16sylib 218 . . . . 5 (𝐶𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1817fveq2d 6910 . . . 4 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (♯‘𝐶))
19 rabssab 4085 . . . . . . 7 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (♯‘𝑐) = 𝑀}
2019sseli 3979 . . . . . 6 (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀})
2120, 3eleq2s 2859 . . . . 5 (𝐶𝑂𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀})
22 fveqeq2 6915 . . . . . 6 (𝑏 = 𝐶 → ((♯‘𝑏) = 𝑀 ↔ (♯‘𝐶) = 𝑀))
23 fveqeq2 6915 . . . . . . 7 (𝑐 = 𝑏 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑏) = 𝑀))
2423cbvabv 2812 . . . . . 6 {𝑐 ∣ (♯‘𝑐) = 𝑀} = {𝑏 ∣ (♯‘𝑏) = 𝑀}
2522, 24elab2g 3680 . . . . 5 (𝐶𝑂 → (𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀} ↔ (♯‘𝐶) = 𝑀))
2621, 25mpbid 232 . . . 4 (𝐶𝑂 → (♯‘𝐶) = 𝑀)
2718, 26eqtrd 2777 . . 3 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀)
28 fzfi 14013 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
29 hashssdif 14451 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)))
3028, 15, 29sylancr 587 . . . 4 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)))
318nnnn0i 12534 . . . . . 6 (𝑀 + 𝑁) ∈ ℕ0
32 hashfz1 14385 . . . . . 6 ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3331, 32mp1i 13 . . . . 5 (𝐶𝑂 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3433, 26oveq12d 7449 . . . 4 (𝐶𝑂 → ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)) = ((𝑀 + 𝑁) − 𝑀))
351nncni 12276 . . . . . 6 𝑀 ∈ ℂ
362nncni 12276 . . . . . 6 𝑁 ∈ ℂ
37 pncan2 11515 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3835, 36, 37mp2an 692 . . . . 5 ((𝑀 + 𝑁) − 𝑀) = 𝑁
3938a1i 11 . . . 4 (𝐶𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4030, 34, 393eqtrd 2781 . . 3 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁)
4127, 40oveq12d 7449 . 2 (𝐶𝑂 → ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀𝑁))
4211, 41eqtrd 2777 1 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2714  {crab 3436  cdif 3948  cin 3950  wss 3951  𝒫 cpw 4600  cmpt 5225  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  1c1 11156   + caddc 11158  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  chash 14369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-hash 14370
This theorem is referenced by:  ballotlem5  34502
  Copyright terms: Public domain W3C validator