Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemfmpn Structured version   Visualization version   GIF version

Theorem ballotlemfmpn 34508
Description: (𝐹𝐶) finishes counting at (𝑀𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
Assertion
Ref Expression
ballotlemfmpn (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂,𝑐   𝐹,𝑐,𝑖   𝐶,𝑖
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemfmpn
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 id 22 . . 3 (𝐶𝑂𝐶𝑂)
7 nnaddcl 12148 . . . . . 6 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
81, 2, 7mp2an 692 . . . . 5 (𝑀 + 𝑁) ∈ ℕ
98nnzi 12496 . . . 4 (𝑀 + 𝑁) ∈ ℤ
109a1i 11 . . 3 (𝐶𝑂 → (𝑀 + 𝑁) ∈ ℤ)
111, 2, 3, 4, 5, 6, 10ballotlemfval 34503 . 2 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))))
12 ssrab2 4027 . . . . . . . . 9 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁))
133, 12eqsstri 3976 . . . . . . . 8 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁))
1413sseli 3925 . . . . . . 7 (𝐶𝑂𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁)))
1514elpwid 4556 . . . . . 6 (𝐶𝑂𝐶 ⊆ (1...(𝑀 + 𝑁)))
16 sseqin2 4170 . . . . . 6 (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1715, 16sylib 218 . . . . 5 (𝐶𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶)
1817fveq2d 6826 . . . 4 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (♯‘𝐶))
19 rabssab 4032 . . . . . . 7 {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (♯‘𝑐) = 𝑀}
2019sseli 3925 . . . . . 6 (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀})
2120, 3eleq2s 2849 . . . . 5 (𝐶𝑂𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀})
22 fveqeq2 6831 . . . . . 6 (𝑏 = 𝐶 → ((♯‘𝑏) = 𝑀 ↔ (♯‘𝐶) = 𝑀))
23 fveqeq2 6831 . . . . . . 7 (𝑐 = 𝑏 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑏) = 𝑀))
2423cbvabv 2801 . . . . . 6 {𝑐 ∣ (♯‘𝑐) = 𝑀} = {𝑏 ∣ (♯‘𝑏) = 𝑀}
2522, 24elab2g 3631 . . . . 5 (𝐶𝑂 → (𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀} ↔ (♯‘𝐶) = 𝑀))
2621, 25mpbid 232 . . . 4 (𝐶𝑂 → (♯‘𝐶) = 𝑀)
2718, 26eqtrd 2766 . . 3 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀)
28 fzfi 13879 . . . . 5 (1...(𝑀 + 𝑁)) ∈ Fin
29 hashssdif 14319 . . . . 5 (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)))
3028, 15, 29sylancr 587 . . . 4 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)))
318nnnn0i 12389 . . . . . 6 (𝑀 + 𝑁) ∈ ℕ0
32 hashfz1 14253 . . . . . 6 ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3331, 32mp1i 13 . . . . 5 (𝐶𝑂 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁))
3433, 26oveq12d 7364 . . . 4 (𝐶𝑂 → ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)) = ((𝑀 + 𝑁) − 𝑀))
351nncni 12135 . . . . . 6 𝑀 ∈ ℂ
362nncni 12135 . . . . . 6 𝑁 ∈ ℂ
37 pncan2 11367 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
3835, 36, 37mp2an 692 . . . . 5 ((𝑀 + 𝑁) − 𝑀) = 𝑁
3938a1i 11 . . . 4 (𝐶𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁)
4030, 34, 393eqtrd 2770 . . 3 (𝐶𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁)
4127, 40oveq12d 7364 . 2 (𝐶𝑂 → ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀𝑁))
4211, 41eqtrd 2766 1 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  {cab 2709  {crab 3395  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547  cmpt 5170  cfv 6481  (class class class)co 7346  Fincfn 8869  cc 11004  1c1 11007   + caddc 11009  cmin 11344   / cdiv 11774  cn 12125  0cn0 12381  cz 12468  ...cfz 13407  chash 14237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238
This theorem is referenced by:  ballotlem5  34513
  Copyright terms: Public domain W3C validator