![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfmpn | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) finishes counting at (𝑀 − 𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
Ref | Expression |
---|---|
ballotlemfmpn | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
7 | nnaddcl 12134 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
8 | 1, 2, 7 | mp2an 690 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
9 | 8 | nnzi 12485 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ ℤ |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (𝑀 + 𝑁) ∈ ℤ) |
11 | 1, 2, 3, 4, 5, 6, 10 | ballotlemfval 32901 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)))) |
12 | ssrab2 4035 | . . . . . . . . 9 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁)) | |
13 | 3, 12 | eqsstri 3976 | . . . . . . . 8 ⊢ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
14 | 13 | sseli 3938 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
15 | 14 | elpwid 4567 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
16 | sseqin2 4173 | . . . . . 6 ⊢ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) | |
17 | 15, 16 | sylib 217 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) |
18 | 17 | fveq2d 6843 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (♯‘𝐶)) |
19 | rabssab 4041 | . . . . . . 7 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (♯‘𝑐) = 𝑀} | |
20 | 19 | sseli 3938 | . . . . . 6 ⊢ (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
21 | 20, 3 | eleq2s 2856 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
22 | fveqeq2 6848 | . . . . . 6 ⊢ (𝑏 = 𝐶 → ((♯‘𝑏) = 𝑀 ↔ (♯‘𝐶) = 𝑀)) | |
23 | fveqeq2 6848 | . . . . . . 7 ⊢ (𝑐 = 𝑏 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑏) = 𝑀)) | |
24 | 23 | cbvabv 2810 | . . . . . 6 ⊢ {𝑐 ∣ (♯‘𝑐) = 𝑀} = {𝑏 ∣ (♯‘𝑏) = 𝑀} |
25 | 22, 24 | elab2g 3630 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀} ↔ (♯‘𝐶) = 𝑀)) |
26 | 21, 25 | mpbid 231 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘𝐶) = 𝑀) |
27 | 18, 26 | eqtrd 2777 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀) |
28 | fzfi 13831 | . . . . 5 ⊢ (1...(𝑀 + 𝑁)) ∈ Fin | |
29 | hashssdif 14266 | . . . . 5 ⊢ (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) | |
30 | 28, 15, 29 | sylancr 587 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) |
31 | 8 | nnnn0i 12379 | . . . . . 6 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
32 | hashfz1 14200 | . . . . . 6 ⊢ ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) | |
33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) |
34 | 33, 26 | oveq12d 7369 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)) = ((𝑀 + 𝑁) − 𝑀)) |
35 | 1 | nncni 12121 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
36 | 2 | nncni 12121 | . . . . . 6 ⊢ 𝑁 ∈ ℂ |
37 | pncan2 11366 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
38 | 35, 36, 37 | mp2an 690 | . . . . 5 ⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
40 | 30, 34, 39 | 3eqtrd 2781 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁) |
41 | 27, 40 | oveq12d 7369 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀 − 𝑁)) |
42 | 11, 41 | eqtrd 2777 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {cab 2714 {crab 3405 ∖ cdif 3905 ∩ cin 3907 ⊆ wss 3908 𝒫 cpw 4558 ↦ cmpt 5186 ‘cfv 6493 (class class class)co 7351 Fincfn 8841 ℂcc 11007 1c1 11010 + caddc 11012 − cmin 11343 / cdiv 11770 ℕcn 12111 ℕ0cn0 12371 ℤcz 12457 ...cfz 13378 ♯chash 14184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7664 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5529 df-eprel 5535 df-po 5543 df-so 5544 df-fr 5586 df-we 5588 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6251 df-ord 6318 df-on 6319 df-lim 6320 df-suc 6321 df-iota 6445 df-fun 6495 df-fn 6496 df-f 6497 df-f1 6498 df-fo 6499 df-f1o 6500 df-fv 6501 df-riota 7307 df-ov 7354 df-oprab 7355 df-mpo 7356 df-om 7795 df-1st 7913 df-2nd 7914 df-frecs 8204 df-wrecs 8235 df-recs 8309 df-rdg 8348 df-1o 8404 df-oadd 8408 df-er 8606 df-en 8842 df-dom 8843 df-sdom 8844 df-fin 8845 df-dju 9795 df-card 9833 df-pnf 11149 df-mnf 11150 df-xr 11151 df-ltxr 11152 df-le 11153 df-sub 11345 df-neg 11346 df-nn 12112 df-n0 12372 df-z 12458 df-uz 12722 df-fz 13379 df-hash 14185 |
This theorem is referenced by: ballotlem5 32911 |
Copyright terms: Public domain | W3C validator |