| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfmpn | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) finishes counting at (𝑀 − 𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| Ref | Expression |
|---|---|
| ballotlemfmpn | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
| 7 | nnaddcl 12289 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 8 | 1, 2, 7 | mp2an 692 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
| 9 | 8 | nnzi 12641 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ ℤ |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (𝑀 + 𝑁) ∈ ℤ) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | ballotlemfval 34492 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)))) |
| 12 | ssrab2 4080 | . . . . . . . . 9 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁)) | |
| 13 | 3, 12 | eqsstri 4030 | . . . . . . . 8 ⊢ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 14 | 13 | sseli 3979 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
| 15 | 14 | elpwid 4609 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
| 16 | sseqin2 4223 | . . . . . 6 ⊢ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) | |
| 17 | 15, 16 | sylib 218 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) |
| 18 | 17 | fveq2d 6910 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (♯‘𝐶)) |
| 19 | rabssab 4085 | . . . . . . 7 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (♯‘𝑐) = 𝑀} | |
| 20 | 19 | sseli 3979 | . . . . . 6 ⊢ (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
| 21 | 20, 3 | eleq2s 2859 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
| 22 | fveqeq2 6915 | . . . . . 6 ⊢ (𝑏 = 𝐶 → ((♯‘𝑏) = 𝑀 ↔ (♯‘𝐶) = 𝑀)) | |
| 23 | fveqeq2 6915 | . . . . . . 7 ⊢ (𝑐 = 𝑏 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑏) = 𝑀)) | |
| 24 | 23 | cbvabv 2812 | . . . . . 6 ⊢ {𝑐 ∣ (♯‘𝑐) = 𝑀} = {𝑏 ∣ (♯‘𝑏) = 𝑀} |
| 25 | 22, 24 | elab2g 3680 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀} ↔ (♯‘𝐶) = 𝑀)) |
| 26 | 21, 25 | mpbid 232 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘𝐶) = 𝑀) |
| 27 | 18, 26 | eqtrd 2777 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀) |
| 28 | fzfi 14013 | . . . . 5 ⊢ (1...(𝑀 + 𝑁)) ∈ Fin | |
| 29 | hashssdif 14451 | . . . . 5 ⊢ (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) | |
| 30 | 28, 15, 29 | sylancr 587 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) |
| 31 | 8 | nnnn0i 12534 | . . . . . 6 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
| 32 | hashfz1 14385 | . . . . . 6 ⊢ ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) | |
| 33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) |
| 34 | 33, 26 | oveq12d 7449 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)) = ((𝑀 + 𝑁) − 𝑀)) |
| 35 | 1 | nncni 12276 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 36 | 2 | nncni 12276 | . . . . . 6 ⊢ 𝑁 ∈ ℂ |
| 37 | pncan2 11515 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
| 38 | 35, 36, 37 | mp2an 692 | . . . . 5 ⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
| 39 | 38 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
| 40 | 30, 34, 39 | 3eqtrd 2781 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁) |
| 41 | 27, 40 | oveq12d 7449 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀 − 𝑁)) |
| 42 | 11, 41 | eqtrd 2777 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2714 {crab 3436 ∖ cdif 3948 ∩ cin 3950 ⊆ wss 3951 𝒫 cpw 4600 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 ℂcc 11153 1c1 11156 + caddc 11158 − cmin 11492 / cdiv 11920 ℕcn 12266 ℕ0cn0 12526 ℤcz 12613 ...cfz 13547 ♯chash 14369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-dju 9941 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-hash 14370 |
| This theorem is referenced by: ballotlem5 34502 |
| Copyright terms: Public domain | W3C validator |