Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfmpn | Structured version Visualization version GIF version |
Description: (𝐹‘𝐶) finishes counting at (𝑀 − 𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
Ref | Expression |
---|---|
ballotlemfmpn | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
7 | nnaddcl 11926 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
8 | 1, 2, 7 | mp2an 688 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
9 | 8 | nnzi 12274 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ ℤ |
10 | 9 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (𝑀 + 𝑁) ∈ ℤ) |
11 | 1, 2, 3, 4, 5, 6, 10 | ballotlemfval 32356 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)))) |
12 | ssrab2 4009 | . . . . . . . . 9 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁)) | |
13 | 3, 12 | eqsstri 3951 | . . . . . . . 8 ⊢ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
14 | 13 | sseli 3913 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
15 | 14 | elpwid 4541 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
16 | sseqin2 4146 | . . . . . 6 ⊢ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) | |
17 | 15, 16 | sylib 217 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) |
18 | 17 | fveq2d 6760 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (♯‘𝐶)) |
19 | rabssab 4014 | . . . . . . 7 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (♯‘𝑐) = 𝑀} | |
20 | 19 | sseli 3913 | . . . . . 6 ⊢ (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
21 | 20, 3 | eleq2s 2857 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
22 | fveqeq2 6765 | . . . . . 6 ⊢ (𝑏 = 𝐶 → ((♯‘𝑏) = 𝑀 ↔ (♯‘𝐶) = 𝑀)) | |
23 | fveqeq2 6765 | . . . . . . 7 ⊢ (𝑐 = 𝑏 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑏) = 𝑀)) | |
24 | 23 | cbvabv 2812 | . . . . . 6 ⊢ {𝑐 ∣ (♯‘𝑐) = 𝑀} = {𝑏 ∣ (♯‘𝑏) = 𝑀} |
25 | 22, 24 | elab2g 3604 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀} ↔ (♯‘𝐶) = 𝑀)) |
26 | 21, 25 | mpbid 231 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘𝐶) = 𝑀) |
27 | 18, 26 | eqtrd 2778 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀) |
28 | fzfi 13620 | . . . . 5 ⊢ (1...(𝑀 + 𝑁)) ∈ Fin | |
29 | hashssdif 14055 | . . . . 5 ⊢ (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) | |
30 | 28, 15, 29 | sylancr 586 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) |
31 | 8 | nnnn0i 12171 | . . . . . 6 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
32 | hashfz1 13988 | . . . . . 6 ⊢ ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) | |
33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) |
34 | 33, 26 | oveq12d 7273 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)) = ((𝑀 + 𝑁) − 𝑀)) |
35 | 1 | nncni 11913 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
36 | 2 | nncni 11913 | . . . . . 6 ⊢ 𝑁 ∈ ℂ |
37 | pncan2 11158 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
38 | 35, 36, 37 | mp2an 688 | . . . . 5 ⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
39 | 38 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
40 | 30, 34, 39 | 3eqtrd 2782 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁) |
41 | 27, 40 | oveq12d 7273 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀 − 𝑁)) |
42 | 11, 41 | eqtrd 2778 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 ℂcc 10800 1c1 10803 + caddc 10805 − cmin 11135 / cdiv 11562 ℕcn 11903 ℕ0cn0 12163 ℤcz 12249 ...cfz 13168 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 |
This theorem is referenced by: ballotlem5 32366 |
Copyright terms: Public domain | W3C validator |