| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemfmpn | Structured version Visualization version GIF version | ||
| Description: (𝐹‘𝐶) finishes counting at (𝑀 − 𝑁). (Contributed by Thierry Arnoux, 25-Nov-2016.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| Ref | Expression |
|---|---|
| ballotlemfmpn | ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | id 22 | . . 3 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝑂) | |
| 7 | nnaddcl 12216 | . . . . . 6 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 8 | 1, 2, 7 | mp2an 692 | . . . . 5 ⊢ (𝑀 + 𝑁) ∈ ℕ |
| 9 | 8 | nnzi 12564 | . . . 4 ⊢ (𝑀 + 𝑁) ∈ ℤ |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (𝑀 + 𝑁) ∈ ℤ) |
| 11 | 1, 2, 3, 4, 5, 6, 10 | ballotlemfval 34488 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)))) |
| 12 | ssrab2 4046 | . . . . . . . . 9 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ 𝒫 (1...(𝑀 + 𝑁)) | |
| 13 | 3, 12 | eqsstri 3996 | . . . . . . . 8 ⊢ 𝑂 ⊆ 𝒫 (1...(𝑀 + 𝑁)) |
| 14 | 13 | sseli 3945 | . . . . . . 7 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ 𝒫 (1...(𝑀 + 𝑁))) |
| 15 | 14 | elpwid 4575 | . . . . . 6 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ⊆ (1...(𝑀 + 𝑁))) |
| 16 | sseqin2 4189 | . . . . . 6 ⊢ (𝐶 ⊆ (1...(𝑀 + 𝑁)) ↔ ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) | |
| 17 | 15, 16 | sylib 218 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → ((1...(𝑀 + 𝑁)) ∩ 𝐶) = 𝐶) |
| 18 | 17 | fveq2d 6865 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = (♯‘𝐶)) |
| 19 | rabssab 4051 | . . . . . . 7 ⊢ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} ⊆ {𝑐 ∣ (♯‘𝑐) = 𝑀} | |
| 20 | 19 | sseli 3945 | . . . . . 6 ⊢ (𝐶 ∈ {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
| 21 | 20, 3 | eleq2s 2847 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → 𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀}) |
| 22 | fveqeq2 6870 | . . . . . 6 ⊢ (𝑏 = 𝐶 → ((♯‘𝑏) = 𝑀 ↔ (♯‘𝐶) = 𝑀)) | |
| 23 | fveqeq2 6870 | . . . . . . 7 ⊢ (𝑐 = 𝑏 → ((♯‘𝑐) = 𝑀 ↔ (♯‘𝑏) = 𝑀)) | |
| 24 | 23 | cbvabv 2800 | . . . . . 6 ⊢ {𝑐 ∣ (♯‘𝑐) = 𝑀} = {𝑏 ∣ (♯‘𝑏) = 𝑀} |
| 25 | 22, 24 | elab2g 3650 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (𝐶 ∈ {𝑐 ∣ (♯‘𝑐) = 𝑀} ↔ (♯‘𝐶) = 𝑀)) |
| 26 | 21, 25 | mpbid 232 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘𝐶) = 𝑀) |
| 27 | 18, 26 | eqtrd 2765 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) = 𝑀) |
| 28 | fzfi 13944 | . . . . 5 ⊢ (1...(𝑀 + 𝑁)) ∈ Fin | |
| 29 | hashssdif 14384 | . . . . 5 ⊢ (((1...(𝑀 + 𝑁)) ∈ Fin ∧ 𝐶 ⊆ (1...(𝑀 + 𝑁))) → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) | |
| 30 | 28, 15, 29 | sylancr 587 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶))) |
| 31 | 8 | nnnn0i 12457 | . . . . . 6 ⊢ (𝑀 + 𝑁) ∈ ℕ0 |
| 32 | hashfz1 14318 | . . . . . 6 ⊢ ((𝑀 + 𝑁) ∈ ℕ0 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) | |
| 33 | 31, 32 | mp1i 13 | . . . . 5 ⊢ (𝐶 ∈ 𝑂 → (♯‘(1...(𝑀 + 𝑁))) = (𝑀 + 𝑁)) |
| 34 | 33, 26 | oveq12d 7408 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((♯‘(1...(𝑀 + 𝑁))) − (♯‘𝐶)) = ((𝑀 + 𝑁) − 𝑀)) |
| 35 | 1 | nncni 12203 | . . . . . 6 ⊢ 𝑀 ∈ ℂ |
| 36 | 2 | nncni 12203 | . . . . . 6 ⊢ 𝑁 ∈ ℂ |
| 37 | pncan2 11435 | . . . . . 6 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑀) = 𝑁) | |
| 38 | 35, 36, 37 | mp2an 692 | . . . . 5 ⊢ ((𝑀 + 𝑁) − 𝑀) = 𝑁 |
| 39 | 38 | a1i 11 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((𝑀 + 𝑁) − 𝑀) = 𝑁) |
| 40 | 30, 34, 39 | 3eqtrd 2769 | . . 3 ⊢ (𝐶 ∈ 𝑂 → (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶)) = 𝑁) |
| 41 | 27, 40 | oveq12d 7408 | . 2 ⊢ (𝐶 ∈ 𝑂 → ((♯‘((1...(𝑀 + 𝑁)) ∩ 𝐶)) − (♯‘((1...(𝑀 + 𝑁)) ∖ 𝐶))) = (𝑀 − 𝑁)) |
| 42 | 11, 41 | eqtrd 2765 | 1 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 𝒫 cpw 4566 ↦ cmpt 5191 ‘cfv 6514 (class class class)co 7390 Fincfn 8921 ℂcc 11073 1c1 11076 + caddc 11078 − cmin 11412 / cdiv 11842 ℕcn 12193 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ♯chash 14302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-hash 14303 |
| This theorem is referenced by: ballotlem5 34498 |
| Copyright terms: Public domain | W3C validator |