| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldir | Structured version Visualization version GIF version | ||
| Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| reldir | ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
| 2 | 1 | isdir 18563 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
| 3 | 2 | ibi 267 | . 2 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
| 4 | 3 | simplld 767 | 1 ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3922 ∪ cuni 4879 I cid 5540 × cxp 5644 ◡ccnv 5645 ↾ cres 5648 ∘ ccom 5650 Rel wrel 5651 DirRelcdir 18559 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3412 df-v 3457 df-in 3929 df-ss 3939 df-uni 4880 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-res 5658 df-dir 18561 |
| This theorem is referenced by: dirtr 18567 dirge 18568 |
| Copyright terms: Public domain | W3C validator |