| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldir | Structured version Visualization version GIF version | ||
| Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| reldir | ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
| 2 | 1 | isdir 18506 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
| 3 | 2 | ibi 267 | . 2 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
| 4 | 3 | simplld 767 | 1 ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4858 I cid 5513 × cxp 5617 ◡ccnv 5618 ↾ cres 5621 ∘ ccom 5623 Rel wrel 5624 DirRelcdir 18502 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 df-ss 3915 df-uni 4859 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-res 5631 df-dir 18504 |
| This theorem is referenced by: dirtr 18510 dirge 18511 |
| Copyright terms: Public domain | W3C validator |