![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reldir | Structured version Visualization version GIF version |
Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
reldir | ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . . 4 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
2 | 1 | isdir 18662 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
3 | 2 | ibi 267 | . 2 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
4 | 3 | simplld 768 | 1 ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3964 ∪ cuni 4913 I cid 5583 × cxp 5688 ◡ccnv 5689 ↾ cres 5692 ∘ ccom 5694 Rel wrel 5695 DirRelcdir 18658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3435 df-v 3481 df-in 3971 df-ss 3981 df-uni 4914 df-br 5150 df-opab 5212 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-res 5702 df-dir 18660 |
This theorem is referenced by: dirtr 18666 dirge 18667 |
Copyright terms: Public domain | W3C validator |