| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reldir | Structured version Visualization version GIF version | ||
| Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| reldir | ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
| 2 | 1 | isdir 18617 | . . 3 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
| 3 | 2 | ibi 267 | . 2 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
| 4 | 3 | simplld 767 | 1 ⊢ (𝑅 ∈ DirRel → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3933 ∪ cuni 4889 I cid 5559 × cxp 5665 ◡ccnv 5666 ↾ cres 5669 ∘ ccom 5671 Rel wrel 5672 DirRelcdir 18613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 df-v 3466 df-in 3940 df-ss 3950 df-uni 4890 df-br 5126 df-opab 5188 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-res 5679 df-dir 18615 |
| This theorem is referenced by: dirtr 18621 dirge 18622 |
| Copyright terms: Public domain | W3C validator |