MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldir Structured version   Visualization version   GIF version

Theorem reldir 18564
Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
reldir (𝑅 ∈ DirRel → Rel 𝑅)

Proof of Theorem reldir
StepHypRef Expression
1 eqid 2730 . . . 4 𝑅 = 𝑅
21isdir 18563 . . 3 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
32ibi 267 . 2 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
43simplld 767 1 (𝑅 ∈ DirRel → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wss 3922   cuni 4879   I cid 5540   × cxp 5644  ccnv 5645  cres 5648  ccom 5650  Rel wrel 5651  DirRelcdir 18559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3412  df-v 3457  df-in 3929  df-ss 3939  df-uni 4880  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-res 5658  df-dir 18561
This theorem is referenced by:  dirtr  18567  dirge  18568
  Copyright terms: Public domain W3C validator