MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reldir Structured version   Visualization version   GIF version

Theorem reldir 18594
Description: A direction is a relation. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
reldir (𝑅 ∈ DirRel → Rel 𝑅)

Proof of Theorem reldir
StepHypRef Expression
1 eqid 2734 . . . 4 𝑅 = 𝑅
21isdir 18593 . . 3 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
32ibi 267 . 2 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
43simplld 767 1 (𝑅 ∈ DirRel → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  wss 3924   cuni 4880   I cid 5544   × cxp 5649  ccnv 5650  cres 5653  ccom 5655  Rel wrel 5656  DirRelcdir 18589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3414  df-v 3459  df-in 3931  df-ss 3941  df-uni 4881  df-br 5117  df-opab 5179  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-res 5663  df-dir 18591
This theorem is referenced by:  dirtr  18597  dirge  18598
  Copyright terms: Public domain W3C validator