Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version |
Description: Deduction form of simpll 763, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplld | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: erinxp 8538 lejoin1 18017 lemeet1 18031 reldir 18232 gexdvdsi 19103 lmhmlmod1 20210 pi1cpbl 24113 oppne1 27006 trgcopyeulem 27070 dfcgra2 27095 subupgr 27557 3trlond 28438 3pthond 28440 3spthond 28442 grpolid 28779 mgcf1 31168 mgccole1 31170 mgcmnt1 31172 mgcmnt2 31173 mgcf1olem1 31181 mgcf1olem2 31182 mgcf1o 31183 mfsdisj 33412 linethru 34382 rngoablo 35993 fourierdlem37 43575 fourierdlem48 43585 fourierdlem93 43630 fourierdlem94 43631 fourierdlem104 43641 fourierdlem112 43649 fourierdlem113 43650 dmmeasal 43880 meaf 43881 meaiuninclem 43908 omef 43924 ome0 43925 omedm 43927 hspmbllem3 44056 |
Copyright terms: Public domain | W3C validator |