Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version |
Description: Deduction form of simpll 764, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplld | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 495 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 495 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: erinxp 8580 lejoin1 18102 lemeet1 18116 reldir 18317 gexdvdsi 19188 lmhmlmod1 20295 pi1cpbl 24207 oppne1 27102 trgcopyeulem 27166 dfcgra2 27191 subupgr 27654 3trlond 28537 3pthond 28539 3spthond 28541 grpolid 28878 mgcf1 31266 mgccole1 31268 mgcmnt1 31270 mgcmnt2 31271 mgcf1olem1 31279 mgcf1olem2 31280 mgcf1o 31281 mfsdisj 33512 linethru 34455 rngoablo 36066 fourierdlem37 43685 fourierdlem48 43695 fourierdlem93 43740 fourierdlem94 43741 fourierdlem104 43751 fourierdlem112 43759 fourierdlem113 43760 dmmeasal 43990 meaf 43991 meaiuninclem 44018 omef 44034 ome0 44035 omedm 44037 hspmbllem3 44166 |
Copyright terms: Public domain | W3C validator |