| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8721 lejoin1 18290 lemeet1 18304 reldir 18507 gexdvdsi 19497 lmhmlmod1 20969 pi1cpbl 24972 oppne1 28720 trgcopyeulem 28784 dfcgra2 28809 subupgr 29267 3trlond 30155 3pthond 30157 3spthond 30159 grpolid 30498 mgcf1 32976 mgccole1 32978 mgcmnt1 32980 mgcmnt2 32981 mgcf1olem1 32989 mgcf1olem2 32990 mgcf1o 32991 erlcl1 33234 erler 33239 mfsdisj 35615 linethru 36218 rngoablo 37968 fourierdlem37 46266 fourierdlem48 46276 fourierdlem93 46321 fourierdlem94 46322 fourierdlem104 46332 fourierdlem112 46340 fourierdlem113 46341 dmmeasal 46574 meaf 46575 meaiuninclem 46602 omef 46618 ome0 46619 omedm 46621 hspmbllem3 46750 sectpropdlem 49161 invpropdlem 49163 isopropdlem 49165 uprcl4 49316 |
| Copyright terms: Public domain | W3C validator |