![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version |
Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplld | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: erinxp 8851 lejoin1 18456 lemeet1 18470 reldir 18671 gexdvdsi 19627 lmhmlmod1 21057 pi1cpbl 25098 oppne1 28769 trgcopyeulem 28833 dfcgra2 28858 subupgr 29324 3trlond 30207 3pthond 30209 3spthond 30211 grpolid 30550 mgcf1 32963 mgccole1 32965 mgcmnt1 32967 mgcmnt2 32968 mgcf1olem1 32976 mgcf1olem2 32977 mgcf1o 32978 erlcl1 33234 erler 33239 mfsdisj 35520 linethru 36119 rngoablo 37870 fourierdlem37 46067 fourierdlem48 46077 fourierdlem93 46122 fourierdlem94 46123 fourierdlem104 46133 fourierdlem112 46141 fourierdlem113 46142 dmmeasal 46375 meaf 46376 meaiuninclem 46403 omef 46419 ome0 46420 omedm 46422 hspmbllem3 46551 |
Copyright terms: Public domain | W3C validator |