![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version |
Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplld | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 496 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 496 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: erinxp 8785 lejoin1 18337 lemeet1 18351 reldir 18552 gexdvdsi 19451 lmhmlmod1 20644 pi1cpbl 24560 oppne1 27992 trgcopyeulem 28056 dfcgra2 28081 subupgr 28544 3trlond 29426 3pthond 29428 3spthond 29430 grpolid 29769 mgcf1 32158 mgccole1 32160 mgcmnt1 32162 mgcmnt2 32163 mgcf1olem1 32171 mgcf1olem2 32172 mgcf1o 32173 mfsdisj 34541 linethru 35125 rngoablo 36776 fourierdlem37 44860 fourierdlem48 44870 fourierdlem93 44915 fourierdlem94 44916 fourierdlem104 44926 fourierdlem112 44934 fourierdlem113 44935 dmmeasal 45168 meaf 45169 meaiuninclem 45196 omef 45212 ome0 45213 omedm 45215 hspmbllem3 45344 |
Copyright terms: Public domain | W3C validator |