![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version |
Description: Deduction form of simpll 767, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Ref | Expression |
---|---|
simplld | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: erinxp 8836 lejoin1 18448 lemeet1 18462 reldir 18663 gexdvdsi 19622 lmhmlmod1 21056 pi1cpbl 25099 oppne1 28772 trgcopyeulem 28836 dfcgra2 28861 subupgr 29327 3trlond 30215 3pthond 30217 3spthond 30219 grpolid 30558 mgcf1 32976 mgccole1 32978 mgcmnt1 32980 mgcmnt2 32981 mgcf1olem1 32989 mgcf1olem2 32990 mgcf1o 32991 erlcl1 33260 erler 33265 mfsdisj 35547 linethru 36147 rngoablo 37907 fourierdlem37 46111 fourierdlem48 46121 fourierdlem93 46166 fourierdlem94 46167 fourierdlem104 46177 fourierdlem112 46185 fourierdlem113 46186 dmmeasal 46419 meaf 46420 meaiuninclem 46447 omef 46463 ome0 46464 omedm 46466 hspmbllem3 46595 |
Copyright terms: Public domain | W3C validator |