| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8725 lejoin1 18306 lemeet1 18320 reldir 18523 gexdvdsi 19480 lmhmlmod1 20955 pi1cpbl 24960 oppne1 28704 trgcopyeulem 28768 dfcgra2 28793 subupgr 29250 3trlond 30135 3pthond 30137 3spthond 30139 grpolid 30478 mgcf1 32943 mgccole1 32945 mgcmnt1 32947 mgcmnt2 32948 mgcf1olem1 32956 mgcf1olem2 32957 mgcf1o 32958 erlcl1 33210 erler 33215 mfsdisj 35522 linethru 36126 rngoablo 37887 fourierdlem37 46126 fourierdlem48 46136 fourierdlem93 46181 fourierdlem94 46182 fourierdlem104 46192 fourierdlem112 46200 fourierdlem113 46201 dmmeasal 46434 meaf 46435 meaiuninclem 46462 omef 46478 ome0 46479 omedm 46481 hspmbllem3 46610 sectpropdlem 49022 invpropdlem 49024 isopropdlem 49026 uprcl4 49177 |
| Copyright terms: Public domain | W3C validator |