MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplld Structured version   Visualization version   GIF version

Theorem simplld 767
Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simplld.1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Assertion
Ref Expression
simplld (𝜑𝜓)

Proof of Theorem simplld
StepHypRef Expression
1 simplld.1 . . 3 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
21simpld 494 . 2 (𝜑 → (𝜓𝜒))
32simpld 494 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  erinxp  8721  lejoin1  18290  lemeet1  18304  reldir  18507  gexdvdsi  19497  lmhmlmod1  20969  pi1cpbl  24972  oppne1  28720  trgcopyeulem  28784  dfcgra2  28809  subupgr  29267  3trlond  30155  3pthond  30157  3spthond  30159  grpolid  30498  mgcf1  32976  mgccole1  32978  mgcmnt1  32980  mgcmnt2  32981  mgcf1olem1  32989  mgcf1olem2  32990  mgcf1o  32991  erlcl1  33234  erler  33239  mfsdisj  35615  linethru  36218  rngoablo  37968  fourierdlem37  46266  fourierdlem48  46276  fourierdlem93  46321  fourierdlem94  46322  fourierdlem104  46332  fourierdlem112  46340  fourierdlem113  46341  dmmeasal  46574  meaf  46575  meaiuninclem  46602  omef  46618  ome0  46619  omedm  46621  hspmbllem3  46750  sectpropdlem  49161  invpropdlem  49163  isopropdlem  49165  uprcl4  49316
  Copyright terms: Public domain W3C validator