| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8764 lejoin1 18343 lemeet1 18357 reldir 18558 gexdvdsi 19513 lmhmlmod1 20940 pi1cpbl 24944 oppne1 28668 trgcopyeulem 28732 dfcgra2 28757 subupgr 29214 3trlond 30102 3pthond 30104 3spthond 30106 grpolid 30445 mgcf1 32914 mgccole1 32916 mgcmnt1 32918 mgcmnt2 32919 mgcf1olem1 32927 mgcf1olem2 32928 mgcf1o 32929 erlcl1 33211 erler 33216 mfsdisj 35537 linethru 36141 rngoablo 37902 fourierdlem37 46142 fourierdlem48 46152 fourierdlem93 46197 fourierdlem94 46198 fourierdlem104 46208 fourierdlem112 46216 fourierdlem113 46217 dmmeasal 46450 meaf 46451 meaiuninclem 46478 omef 46494 ome0 46495 omedm 46497 hspmbllem3 46626 sectpropdlem 49025 invpropdlem 49027 isopropdlem 49029 uprcl4 49180 |
| Copyright terms: Public domain | W3C validator |