| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8768 lejoin1 18349 lemeet1 18363 reldir 18564 gexdvdsi 19519 lmhmlmod1 20946 pi1cpbl 24950 oppne1 28675 trgcopyeulem 28739 dfcgra2 28764 subupgr 29221 3trlond 30109 3pthond 30111 3spthond 30113 grpolid 30452 mgcf1 32922 mgccole1 32924 mgcmnt1 32926 mgcmnt2 32927 mgcf1olem1 32935 mgcf1olem2 32936 mgcf1o 32937 erlcl1 33219 erler 33224 mfsdisj 35539 linethru 36138 rngoablo 37899 fourierdlem37 46115 fourierdlem48 46125 fourierdlem93 46170 fourierdlem94 46171 fourierdlem104 46181 fourierdlem112 46189 fourierdlem113 46190 dmmeasal 46423 meaf 46424 meaiuninclem 46451 omef 46467 ome0 46468 omedm 46470 hspmbllem3 46599 sectpropdlem 48953 invpropdlem 48955 isopropdlem 48957 uprcl4 49098 |
| Copyright terms: Public domain | W3C validator |