| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8814 lejoin1 18403 lemeet1 18417 reldir 18618 gexdvdsi 19574 lmhmlmod1 21005 pi1cpbl 25032 oppne1 28704 trgcopyeulem 28768 dfcgra2 28793 subupgr 29251 3trlond 30139 3pthond 30141 3spthond 30143 grpolid 30482 mgcf1 32924 mgccole1 32926 mgcmnt1 32928 mgcmnt2 32929 mgcf1olem1 32937 mgcf1olem2 32938 mgcf1o 32939 erlcl1 33210 erler 33215 mfsdisj 35496 linethru 36095 rngoablo 37856 fourierdlem37 46104 fourierdlem48 46114 fourierdlem93 46159 fourierdlem94 46160 fourierdlem104 46170 fourierdlem112 46178 fourierdlem113 46179 dmmeasal 46412 meaf 46413 meaiuninclem 46440 omef 46456 ome0 46457 omedm 46459 hspmbllem3 46588 uprcl4 48902 |
| Copyright terms: Public domain | W3C validator |