| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8767 lejoin1 18350 lemeet1 18364 reldir 18565 gexdvdsi 19520 lmhmlmod1 20947 pi1cpbl 24951 oppne1 28675 trgcopyeulem 28739 dfcgra2 28764 subupgr 29221 3trlond 30109 3pthond 30111 3spthond 30113 grpolid 30452 mgcf1 32921 mgccole1 32923 mgcmnt1 32925 mgcmnt2 32926 mgcf1olem1 32934 mgcf1olem2 32935 mgcf1o 32936 erlcl1 33218 erler 33223 mfsdisj 35544 linethru 36148 rngoablo 37909 fourierdlem37 46149 fourierdlem48 46159 fourierdlem93 46204 fourierdlem94 46205 fourierdlem104 46215 fourierdlem112 46223 fourierdlem113 46224 dmmeasal 46457 meaf 46458 meaiuninclem 46485 omef 46501 ome0 46502 omedm 46504 hspmbllem3 46633 sectpropdlem 49029 invpropdlem 49031 isopropdlem 49033 uprcl4 49184 |
| Copyright terms: Public domain | W3C validator |