MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplld Structured version   Visualization version   GIF version

Theorem simplld 767
Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
simplld.1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Assertion
Ref Expression
simplld (𝜑𝜓)

Proof of Theorem simplld
StepHypRef Expression
1 simplld.1 . . 3 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
21simpld 494 . 2 (𝜑 → (𝜓𝜒))
32simpld 494 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  erinxp  8764  lejoin1  18343  lemeet1  18357  reldir  18558  gexdvdsi  19513  lmhmlmod1  20940  pi1cpbl  24944  oppne1  28668  trgcopyeulem  28732  dfcgra2  28757  subupgr  29214  3trlond  30102  3pthond  30104  3spthond  30106  grpolid  30445  mgcf1  32914  mgccole1  32916  mgcmnt1  32918  mgcmnt2  32919  mgcf1olem1  32927  mgcf1olem2  32928  mgcf1o  32929  erlcl1  33211  erler  33216  mfsdisj  35537  linethru  36141  rngoablo  37902  fourierdlem37  46142  fourierdlem48  46152  fourierdlem93  46197  fourierdlem94  46198  fourierdlem104  46208  fourierdlem112  46216  fourierdlem113  46217  dmmeasal  46450  meaf  46451  meaiuninclem  46478  omef  46494  ome0  46495  omedm  46497  hspmbllem3  46626  sectpropdlem  49025  invpropdlem  49027  isopropdlem  49029  uprcl4  49180
  Copyright terms: Public domain W3C validator