| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simplld | Structured version Visualization version GIF version | ||
| Description: Deduction form of simpll 766, eliminating a double conjunct. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| simplld.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Ref | Expression |
|---|---|
| simplld | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplld.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | 1 | simpld 494 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 494 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: erinxp 8715 lejoin1 18285 lemeet1 18299 reldir 18502 gexdvdsi 19493 lmhmlmod1 20965 pi1cpbl 24969 oppne1 28717 trgcopyeulem 28781 dfcgra2 28806 subupgr 29263 3trlond 30148 3pthond 30150 3spthond 30152 grpolid 30491 mgcf1 32964 mgccole1 32966 mgcmnt1 32968 mgcmnt2 32969 mgcf1olem1 32977 mgcf1olem2 32978 mgcf1o 32979 erlcl1 33222 erler 33227 mfsdisj 35582 linethru 36186 rngoablo 37947 fourierdlem37 46181 fourierdlem48 46191 fourierdlem93 46236 fourierdlem94 46237 fourierdlem104 46247 fourierdlem112 46255 fourierdlem113 46256 dmmeasal 46489 meaf 46490 meaiuninclem 46517 omef 46533 ome0 46534 omedm 46536 hspmbllem3 46665 sectpropdlem 49067 invpropdlem 49069 isopropdlem 49071 uprcl4 49222 |
| Copyright terms: Public domain | W3C validator |