Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dirdm | Structured version Visualization version GIF version |
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirdm | ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . . . 4 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
2 | dmrnssfld 5868 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
3 | 1, 2 | sstri 3926 | . . 3 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ DirRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | dmresi 5950 | . . 3 ⊢ dom ( I ↾ ∪ ∪ 𝑅) = ∪ ∪ 𝑅 | |
6 | eqid 2738 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
7 | 6 | isdir 18231 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
8 | 7 | ibi 266 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
9 | 8 | simplrd 766 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
10 | dmss 5800 | . . . 4 ⊢ (( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅 → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ DirRel → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) |
12 | 5, 11 | eqsstrrid 3966 | . 2 ⊢ (𝑅 ∈ DirRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
13 | 4, 12 | eqssd 3934 | 1 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 ∪ cuni 4836 I cid 5479 × cxp 5578 ◡ccnv 5579 dom cdm 5580 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Rel wrel 5585 DirRelcdir 18227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-dir 18229 |
This theorem is referenced by: dirref 18234 dirge 18236 tailfval 34488 tailf 34491 filnetlem4 34497 |
Copyright terms: Public domain | W3C validator |