MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirdm Structured version   Visualization version   GIF version

Theorem dirdm 18506
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirdm (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)

Proof of Theorem dirdm
StepHypRef Expression
1 ssun1 4125 . . . 4 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5912 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3939 . . 3 dom 𝑅 𝑅
43a1i 11 . 2 (𝑅 ∈ DirRel → dom 𝑅 𝑅)
5 dmresi 6000 . . 3 dom ( I ↾ 𝑅) = 𝑅
6 eqid 2731 . . . . . . 7 𝑅 = 𝑅
76isdir 18504 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
87ibi 267 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
98simplrd 769 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
10 dmss 5841 . . . 4 (( I ↾ 𝑅) ⊆ 𝑅 → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
119, 10syl 17 . . 3 (𝑅 ∈ DirRel → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
125, 11eqsstrrid 3969 . 2 (𝑅 ∈ DirRel → 𝑅 ⊆ dom 𝑅)
134, 12eqssd 3947 1 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cun 3895  wss 3897   cuni 4856   I cid 5508   × cxp 5612  ccnv 5613  dom cdm 5614  ran crn 5615  cres 5616  ccom 5618  Rel wrel 5619  DirRelcdir 18500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-dir 18502
This theorem is referenced by:  dirref  18507  dirge  18509  tailfval  36414  tailf  36417  filnetlem4  36423
  Copyright terms: Public domain W3C validator