![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirdm | Structured version Visualization version GIF version |
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirdm | ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . . . 4 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
2 | dmrnssfld 5996 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
3 | 1, 2 | sstri 4018 | . . 3 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ DirRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | dmresi 6081 | . . 3 ⊢ dom ( I ↾ ∪ ∪ 𝑅) = ∪ ∪ 𝑅 | |
6 | eqid 2740 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
7 | 6 | isdir 18668 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
8 | 7 | ibi 267 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
9 | 8 | simplrd 769 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
10 | dmss 5927 | . . . 4 ⊢ (( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅 → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ DirRel → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) |
12 | 5, 11 | eqsstrrid 4058 | . 2 ⊢ (𝑅 ∈ DirRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
13 | 4, 12 | eqssd 4026 | 1 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∪ cuni 4931 I cid 5592 × cxp 5698 ◡ccnv 5699 dom cdm 5700 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 Rel wrel 5705 DirRelcdir 18664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-dir 18666 |
This theorem is referenced by: dirref 18671 dirge 18673 tailfval 36338 tailf 36341 filnetlem4 36347 |
Copyright terms: Public domain | W3C validator |