![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dirdm | Structured version Visualization version GIF version |
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
Ref | Expression |
---|---|
dirdm | ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4069 | . . . 4 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
2 | dmrnssfld 5722 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
3 | 1, 2 | sstri 3898 | . . 3 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ DirRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
5 | dmresi 5799 | . . 3 ⊢ dom ( I ↾ ∪ ∪ 𝑅) = ∪ ∪ 𝑅 | |
6 | eqid 2795 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
7 | 6 | isdir 17671 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
8 | 7 | ibi 268 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
9 | 8 | simplrd 766 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
10 | dmss 5657 | . . . 4 ⊢ (( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅 → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ DirRel → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) |
12 | 5, 11 | eqsstrrid 3937 | . 2 ⊢ (𝑅 ∈ DirRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
13 | 4, 12 | eqssd 3906 | 1 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∪ cun 3857 ⊆ wss 3859 ∪ cuni 4745 I cid 5347 × cxp 5441 ◡ccnv 5442 dom cdm 5443 ran crn 5444 ↾ cres 5445 ∘ ccom 5447 Rel wrel 5448 DirRelcdir 17667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-dir 17669 |
This theorem is referenced by: dirref 17674 dirge 17676 tailfval 33330 tailf 33333 filnetlem4 33339 |
Copyright terms: Public domain | W3C validator |