| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dirdm | Structured version Visualization version GIF version | ||
| Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| dirdm | ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4141 | . . . 4 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
| 2 | dmrnssfld 5937 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 3 | 1, 2 | sstri 3956 | . . 3 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ DirRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
| 5 | dmresi 6023 | . . 3 ⊢ dom ( I ↾ ∪ ∪ 𝑅) = ∪ ∪ 𝑅 | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
| 7 | 6 | isdir 18557 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
| 8 | 7 | ibi 267 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
| 9 | 8 | simplrd 769 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
| 10 | dmss 5866 | . . . 4 ⊢ (( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅 → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ DirRel → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) |
| 12 | 5, 11 | eqsstrrid 3986 | . 2 ⊢ (𝑅 ∈ DirRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
| 13 | 4, 12 | eqssd 3964 | 1 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 ∪ cuni 4871 I cid 5532 × cxp 5636 ◡ccnv 5637 dom cdm 5638 ran crn 5639 ↾ cres 5640 ∘ ccom 5642 Rel wrel 5643 DirRelcdir 18553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-dir 18555 |
| This theorem is referenced by: dirref 18560 dirge 18562 tailfval 36360 tailf 36363 filnetlem4 36369 |
| Copyright terms: Public domain | W3C validator |