MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirdm Structured version   Visualization version   GIF version

Theorem dirdm 18233
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirdm (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)

Proof of Theorem dirdm
StepHypRef Expression
1 ssun1 4102 . . . 4 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5868 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3926 . . 3 dom 𝑅 𝑅
43a1i 11 . 2 (𝑅 ∈ DirRel → dom 𝑅 𝑅)
5 dmresi 5950 . . 3 dom ( I ↾ 𝑅) = 𝑅
6 eqid 2738 . . . . . . 7 𝑅 = 𝑅
76isdir 18231 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
87ibi 266 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
98simplrd 766 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
10 dmss 5800 . . . 4 (( I ↾ 𝑅) ⊆ 𝑅 → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
119, 10syl 17 . . 3 (𝑅 ∈ DirRel → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
125, 11eqsstrrid 3966 . 2 (𝑅 ∈ DirRel → 𝑅 ⊆ dom 𝑅)
134, 12eqssd 3934 1 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cun 3881  wss 3883   cuni 4836   I cid 5479   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  Rel wrel 5585  DirRelcdir 18227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-dir 18229
This theorem is referenced by:  dirref  18234  dirge  18236  tailfval  34488  tailf  34491  filnetlem4  34497
  Copyright terms: Public domain W3C validator