| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dirdm | Structured version Visualization version GIF version | ||
| Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.) |
| Ref | Expression |
|---|---|
| dirdm | ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4144 | . . . 4 ⊢ dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅) | |
| 2 | dmrnssfld 5940 | . . . 4 ⊢ (dom 𝑅 ∪ ran 𝑅) ⊆ ∪ ∪ 𝑅 | |
| 3 | 1, 2 | sstri 3959 | . . 3 ⊢ dom 𝑅 ⊆ ∪ ∪ 𝑅 |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ DirRel → dom 𝑅 ⊆ ∪ ∪ 𝑅) |
| 5 | dmresi 6026 | . . 3 ⊢ dom ( I ↾ ∪ ∪ 𝑅) = ∪ ∪ 𝑅 | |
| 6 | eqid 2730 | . . . . . . 7 ⊢ ∪ ∪ 𝑅 = ∪ ∪ 𝑅 | |
| 7 | 6 | isdir 18564 | . . . . . 6 ⊢ (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅))))) |
| 8 | 7 | ibi 267 | . . . . 5 ⊢ (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) ∧ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ∧ (∪ ∪ 𝑅 × ∪ ∪ 𝑅) ⊆ (◡𝑅 ∘ 𝑅)))) |
| 9 | 8 | simplrd 769 | . . . 4 ⊢ (𝑅 ∈ DirRel → ( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅) |
| 10 | dmss 5869 | . . . 4 ⊢ (( I ↾ ∪ ∪ 𝑅) ⊆ 𝑅 → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝑅 ∈ DirRel → dom ( I ↾ ∪ ∪ 𝑅) ⊆ dom 𝑅) |
| 12 | 5, 11 | eqsstrrid 3989 | . 2 ⊢ (𝑅 ∈ DirRel → ∪ ∪ 𝑅 ⊆ dom 𝑅) |
| 13 | 4, 12 | eqssd 3967 | 1 ⊢ (𝑅 ∈ DirRel → dom 𝑅 = ∪ ∪ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 ∪ cuni 4874 I cid 5535 × cxp 5639 ◡ccnv 5640 dom cdm 5641 ran crn 5642 ↾ cres 5643 ∘ ccom 5645 Rel wrel 5646 DirRelcdir 18560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-dir 18562 |
| This theorem is referenced by: dirref 18567 dirge 18569 tailfval 36367 tailf 36370 filnetlem4 36376 |
| Copyright terms: Public domain | W3C validator |