MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirdm Structured version   Visualization version   GIF version

Theorem dirdm 18060
Description: A direction's domain is equal to its field. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
dirdm (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)

Proof of Theorem dirdm
StepHypRef Expression
1 ssun1 4072 . . . 4 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
2 dmrnssfld 5824 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
31, 2sstri 3896 . . 3 dom 𝑅 𝑅
43a1i 11 . 2 (𝑅 ∈ DirRel → dom 𝑅 𝑅)
5 dmresi 5906 . . 3 dom ( I ↾ 𝑅) = 𝑅
6 eqid 2736 . . . . . . 7 𝑅 = 𝑅
76isdir 18058 . . . . . 6 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
87ibi 270 . . . . 5 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
98simplrd 770 . . . 4 (𝑅 ∈ DirRel → ( I ↾ 𝑅) ⊆ 𝑅)
10 dmss 5756 . . . 4 (( I ↾ 𝑅) ⊆ 𝑅 → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
119, 10syl 17 . . 3 (𝑅 ∈ DirRel → dom ( I ↾ 𝑅) ⊆ dom 𝑅)
125, 11eqsstrrid 3936 . 2 (𝑅 ∈ DirRel → 𝑅 ⊆ dom 𝑅)
134, 12eqssd 3904 1 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cun 3851  wss 3853   cuni 4805   I cid 5439   × cxp 5534  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  ccom 5540  Rel wrel 5541  DirRelcdir 18054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-dir 18056
This theorem is referenced by:  dirref  18061  dirge  18063  tailfval  34247  tailf  34250  filnetlem4  34256
  Copyright terms: Public domain W3C validator