MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirge Structured version   Visualization version   GIF version

Theorem dirge 17849
Description: For any two elements of a directed set, there exists a third element greater than or equal to both. Note that this does not say that the two elements have a least upper bound. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirge.1 𝑋 = dom 𝑅
Assertion
Ref Expression
dirge ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋

Proof of Theorem dirge
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirge.1 . . . . . . 7 𝑋 = dom 𝑅
2 dirdm 17846 . . . . . . 7 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
31, 2syl5eq 2870 . . . . . 6 (𝑅 ∈ DirRel → 𝑋 = 𝑅)
43eleq2d 2900 . . . . 5 (𝑅 ∈ DirRel → (𝐴𝑋𝐴 𝑅))
53eleq2d 2900 . . . . 5 (𝑅 ∈ DirRel → (𝐵𝑋𝐵 𝑅))
64, 5anbi12d 632 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) ↔ (𝐴 𝑅𝐵 𝑅)))
7 eqid 2823 . . . . . . . . 9 𝑅 = 𝑅
87isdir 17844 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
98ibi 269 . . . . . . 7 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
109simprrd 772 . . . . . 6 (𝑅 ∈ DirRel → ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))
11 codir 5982 . . . . . 6 (( 𝑅 × 𝑅) ⊆ (𝑅𝑅) ↔ ∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥))
1210, 11sylib 220 . . . . 5 (𝑅 ∈ DirRel → ∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥))
13 breq1 5071 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑅𝑥𝐴𝑅𝑥))
1413anbi1d 631 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑅𝑥𝑧𝑅𝑥) ↔ (𝐴𝑅𝑥𝑧𝑅𝑥)))
1514exbidv 1922 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑅𝑥𝑧𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥𝑧𝑅𝑥)))
16 breq1 5071 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑅𝑥𝐵𝑅𝑥))
1716anbi2d 630 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑅𝑥𝑧𝑅𝑥) ↔ (𝐴𝑅𝑥𝐵𝑅𝑥)))
1817exbidv 1922 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥(𝐴𝑅𝑥𝑧𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
1915, 18rspc2v 3635 . . . . 5 ((𝐴 𝑅𝐵 𝑅) → (∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
2012, 19syl5com 31 . . . 4 (𝑅 ∈ DirRel → ((𝐴 𝑅𝐵 𝑅) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
216, 20sylbid 242 . . 3 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
22 reldir 17845 . . . . . . . . . 10 (𝑅 ∈ DirRel → Rel 𝑅)
23 relelrn 5817 . . . . . . . . . 10 ((Rel 𝑅𝐴𝑅𝑥) → 𝑥 ∈ ran 𝑅)
2422, 23sylan 582 . . . . . . . . 9 ((𝑅 ∈ DirRel ∧ 𝐴𝑅𝑥) → 𝑥 ∈ ran 𝑅)
2524ex 415 . . . . . . . 8 (𝑅 ∈ DirRel → (𝐴𝑅𝑥𝑥 ∈ ran 𝑅))
26 ssun2 4151 . . . . . . . . . . 11 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
27 dmrnssfld 5843 . . . . . . . . . . 11 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2826, 27sstri 3978 . . . . . . . . . 10 ran 𝑅 𝑅
2928, 3sseqtrrid 4022 . . . . . . . . 9 (𝑅 ∈ DirRel → ran 𝑅𝑋)
3029sseld 3968 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑥 ∈ ran 𝑅𝑥𝑋))
3125, 30syld 47 . . . . . . 7 (𝑅 ∈ DirRel → (𝐴𝑅𝑥𝑥𝑋))
3231adantrd 494 . . . . . 6 (𝑅 ∈ DirRel → ((𝐴𝑅𝑥𝐵𝑅𝑥) → 𝑥𝑋))
3332ancrd 554 . . . . 5 (𝑅 ∈ DirRel → ((𝐴𝑅𝑥𝐵𝑅𝑥) → (𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥))))
3433eximdv 1918 . . . 4 (𝑅 ∈ DirRel → (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) → ∃𝑥(𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥))))
35 df-rex 3146 . . . 4 (∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥) ↔ ∃𝑥(𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥)))
3634, 35syl6ibr 254 . . 3 (𝑅 ∈ DirRel → (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥)))
3721, 36syld 47 . 2 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥)))
38373impib 1112 1 ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  cun 3936  wss 3938   cuni 4840   class class class wbr 5068   I cid 5461   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  ccom 5561  Rel wrel 5562  DirRelcdir 17840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-dir 17842
This theorem is referenced by:  tailfb  33727
  Copyright terms: Public domain W3C validator