MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dirge Structured version   Visualization version   GIF version

Theorem dirge 17505
Description: For any two elements of a directed set, there exists a third element greater than or equal to both. Note that this does not say that the two elements have a least upper bound. (Contributed by Jeff Hankins, 25-Nov-2009.) (Revised by Mario Carneiro, 22-Nov-2013.)
Hypothesis
Ref Expression
dirge.1 𝑋 = dom 𝑅
Assertion
Ref Expression
dirge ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑋

Proof of Theorem dirge
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dirge.1 . . . . . . 7 𝑋 = dom 𝑅
2 dirdm 17502 . . . . . . 7 (𝑅 ∈ DirRel → dom 𝑅 = 𝑅)
31, 2syl5eq 2811 . . . . . 6 (𝑅 ∈ DirRel → 𝑋 = 𝑅)
43eleq2d 2830 . . . . 5 (𝑅 ∈ DirRel → (𝐴𝑋𝐴 𝑅))
53eleq2d 2830 . . . . 5 (𝑅 ∈ DirRel → (𝐵𝑋𝐵 𝑅))
64, 5anbi12d 624 . . . 4 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) ↔ (𝐴 𝑅𝐵 𝑅)))
7 eqid 2765 . . . . . . . . 9 𝑅 = 𝑅
87isdir 17500 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑅 ∈ DirRel ↔ ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅)))))
98ibi 258 . . . . . . 7 (𝑅 ∈ DirRel → ((Rel 𝑅 ∧ ( I ↾ 𝑅) ⊆ 𝑅) ∧ ((𝑅𝑅) ⊆ 𝑅 ∧ ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))))
109simprrd 790 . . . . . 6 (𝑅 ∈ DirRel → ( 𝑅 × 𝑅) ⊆ (𝑅𝑅))
11 codir 5699 . . . . . 6 (( 𝑅 × 𝑅) ⊆ (𝑅𝑅) ↔ ∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥))
1210, 11sylib 209 . . . . 5 (𝑅 ∈ DirRel → ∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥))
13 breq1 4812 . . . . . . . 8 (𝑦 = 𝐴 → (𝑦𝑅𝑥𝐴𝑅𝑥))
1413anbi1d 623 . . . . . . 7 (𝑦 = 𝐴 → ((𝑦𝑅𝑥𝑧𝑅𝑥) ↔ (𝐴𝑅𝑥𝑧𝑅𝑥)))
1514exbidv 2016 . . . . . 6 (𝑦 = 𝐴 → (∃𝑥(𝑦𝑅𝑥𝑧𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥𝑧𝑅𝑥)))
16 breq1 4812 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧𝑅𝑥𝐵𝑅𝑥))
1716anbi2d 622 . . . . . . 7 (𝑧 = 𝐵 → ((𝐴𝑅𝑥𝑧𝑅𝑥) ↔ (𝐴𝑅𝑥𝐵𝑅𝑥)))
1817exbidv 2016 . . . . . 6 (𝑧 = 𝐵 → (∃𝑥(𝐴𝑅𝑥𝑧𝑅𝑥) ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
1915, 18rspc2v 3474 . . . . 5 ((𝐴 𝑅𝐵 𝑅) → (∀𝑦 𝑅𝑧 𝑅𝑥(𝑦𝑅𝑥𝑧𝑅𝑥) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
2012, 19syl5com 31 . . . 4 (𝑅 ∈ DirRel → ((𝐴 𝑅𝐵 𝑅) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
216, 20sylbid 231 . . 3 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) → ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
22 reldir 17501 . . . . . . . . . 10 (𝑅 ∈ DirRel → Rel 𝑅)
23 relelrn 5528 . . . . . . . . . 10 ((Rel 𝑅𝐴𝑅𝑥) → 𝑥 ∈ ran 𝑅)
2422, 23sylan 575 . . . . . . . . 9 ((𝑅 ∈ DirRel ∧ 𝐴𝑅𝑥) → 𝑥 ∈ ran 𝑅)
2524ex 401 . . . . . . . 8 (𝑅 ∈ DirRel → (𝐴𝑅𝑥𝑥 ∈ ran 𝑅))
26 ssun2 3939 . . . . . . . . . . 11 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
27 dmrnssfld 5553 . . . . . . . . . . 11 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
2826, 27sstri 3770 . . . . . . . . . 10 ran 𝑅 𝑅
2928, 3syl5sseqr 3814 . . . . . . . . 9 (𝑅 ∈ DirRel → ran 𝑅𝑋)
3029sseld 3760 . . . . . . . 8 (𝑅 ∈ DirRel → (𝑥 ∈ ran 𝑅𝑥𝑋))
3125, 30syld 47 . . . . . . 7 (𝑅 ∈ DirRel → (𝐴𝑅𝑥𝑥𝑋))
3231adantrd 485 . . . . . 6 (𝑅 ∈ DirRel → ((𝐴𝑅𝑥𝐵𝑅𝑥) → 𝑥𝑋))
3332ancrd 547 . . . . 5 (𝑅 ∈ DirRel → ((𝐴𝑅𝑥𝐵𝑅𝑥) → (𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥))))
3433eximdv 2012 . . . 4 (𝑅 ∈ DirRel → (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) → ∃𝑥(𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥))))
35 df-rex 3061 . . . 4 (∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥) ↔ ∃𝑥(𝑥𝑋 ∧ (𝐴𝑅𝑥𝐵𝑅𝑥)))
3634, 35syl6ibr 243 . . 3 (𝑅 ∈ DirRel → (∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥)))
3721, 36syld 47 . 2 (𝑅 ∈ DirRel → ((𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥)))
38373impib 1144 1 ((𝑅 ∈ DirRel ∧ 𝐴𝑋𝐵𝑋) → ∃𝑥𝑋 (𝐴𝑅𝑥𝐵𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wral 3055  wrex 3056  cun 3730  wss 3732   cuni 4594   class class class wbr 4809   I cid 5184   × cxp 5275  ccnv 5276  dom cdm 5277  ran crn 5278  cres 5279  ccom 5281  Rel wrel 5282  DirRelcdir 17496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-id 5185  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-dir 17498
This theorem is referenced by:  tailfb  32747
  Copyright terms: Public domain W3C validator