MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfmm Structured version   Visualization version   GIF version

Theorem lindfmm 21753
Description: Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindfmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))

Proof of Theorem lindfmm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 21734 . . . . 5 Rel LIndF
21brrelex1i 5679 . . . 4 (𝐹 LIndF 𝑆𝐹 ∈ V)
3 simp3 1138 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
4 dmfex 7845 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐼𝐵) → 𝐼 ∈ V)
52, 3, 4syl2anr 597 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ 𝐹 LIndF 𝑆) → 𝐼 ∈ V)
65ex 412 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆𝐼 ∈ V))
71brrelex1i 5679 . . . 4 ((𝐺𝐹) LIndF 𝑇 → (𝐺𝐹) ∈ V)
8 f1f 6724 . . . . . 6 (𝐺:𝐵1-1𝐶𝐺:𝐵𝐶)
9 fco 6680 . . . . . 6 ((𝐺:𝐵𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
108, 9sylan 580 . . . . 5 ((𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
11103adant1 1130 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
12 dmfex 7845 . . . 4 (((𝐺𝐹) ∈ V ∧ (𝐺𝐹):𝐼𝐶) → 𝐼 ∈ V)
137, 11, 12syl2anr 597 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → 𝐼 ∈ V)
1413ex 412 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → ((𝐺𝐹) LIndF 𝑇𝐼 ∈ V))
15 eldifi 4084 . . . . . . . . 9 (𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
16 simpllr 775 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺:𝐵1-1𝐶)
17 lmhmlmod1 20956 . . . . . . . . . . . . . . 15 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
1817ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑆 ∈ LMod)
19 simprr 772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
20 simprl 770 . . . . . . . . . . . . . . 15 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹:𝐼𝐵)
21 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆))) → 𝑥𝐼)
22 ffvelcdm 7019 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝑥𝐼) → (𝐹𝑥) ∈ 𝐵)
2320, 21, 22syl2an 596 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹𝑥) ∈ 𝐵)
24 lindfmm.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
25 eqid 2729 . . . . . . . . . . . . . . 15 (Scalar‘𝑆) = (Scalar‘𝑆)
26 eqid 2729 . . . . . . . . . . . . . . 15 ( ·𝑠𝑆) = ( ·𝑠𝑆)
27 eqid 2729 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
2824, 25, 26, 27lmodvscl 20800 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
2918, 19, 23, 28syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
30 imassrn 6026 . . . . . . . . . . . . . . . 16 (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝐹
31 frn 6663 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵 → ran 𝐹𝐵)
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝐹:𝐼𝐵𝐼 ∈ V) → ran 𝐹𝐵)
3330, 32sstrid 3949 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝐼 ∈ V) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
3433ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
35 eqid 2729 . . . . . . . . . . . . . . 15 (LSpan‘𝑆) = (LSpan‘𝑆)
3624, 35lspssv 20905 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
3718, 34, 36syl2anc 584 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
38 f1elima 7204 . . . . . . . . . . . . 13 ((𝐺:𝐵1-1𝐶 ∧ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵 ∧ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
3916, 29, 37, 38syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
40 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
41 eqid 2729 . . . . . . . . . . . . . . . 16 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4225, 27, 24, 26, 41lmhmlin 20958 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4340, 19, 23, 42syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
44 ffn 6656 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
4544ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹 Fn 𝐼)
46 fvco2 6924 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐼𝑥𝐼) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4745, 21, 46syl2an 596 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4847oveq2d 7369 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4943, 48eqtr4d 2767 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)))
50 eqid 2729 . . . . . . . . . . . . . . . 16 (LSpan‘𝑇) = (LSpan‘𝑇)
5124, 35, 50lmhmlsp 20972 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
5240, 34, 51syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
53 imaco 6204 . . . . . . . . . . . . . . 15 ((𝐺𝐹) “ (𝐼 ∖ {𝑥})) = (𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))
5453fveq2i 6829 . . . . . . . . . . . . . 14 ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))
5552, 54eqtr4di 2782 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))))
5649, 55eleq12d 2822 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5739, 56bitr3d 281 . . . . . . . . . . 11 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5857notbid 318 . . . . . . . . . 10 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5958anassrs 467 . . . . . . . . 9 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6015, 59sylan2 593 . . . . . . . 8 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))})) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6160ralbidva 3150 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
62 eqid 2729 . . . . . . . . . . . 12 (Scalar‘𝑇) = (Scalar‘𝑇)
6325, 62lmhmsca 20953 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
6463fveq2d 6830 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
6563fveq2d 6830 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑆)))
6665sneqd 4591 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → {(0g‘(Scalar‘𝑇))} = {(0g‘(Scalar‘𝑆))})
6764, 66difeq12d 4080 . . . . . . . . 9 (𝐺 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6867ad3antrrr 730 . . . . . . . 8 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6968raleqdv 3290 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7061, 69bitr4d 282 . . . . . 6 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7170ralbidva 3150 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7217ad2antrr 726 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑆 ∈ LMod)
73 simprr 772 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐼 ∈ V)
74 eqid 2729 . . . . . . 7 (0g‘(Scalar‘𝑆)) = (0g‘(Scalar‘𝑆))
7524, 26, 35, 25, 27, 74islindf2 21740 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
7672, 73, 20, 75syl3anc 1373 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
77 lmhmlmod2 20955 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7877ad2antrr 726 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑇 ∈ LMod)
7910ad2ant2lr 748 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐺𝐹):𝐼𝐶)
80 lindfmm.c . . . . . . 7 𝐶 = (Base‘𝑇)
81 eqid 2729 . . . . . . 7 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
82 eqid 2729 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
8380, 41, 50, 62, 81, 82islindf2 21740 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ (𝐺𝐹):𝐼𝐶) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8478, 73, 79, 83syl3anc 1373 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8571, 76, 843bitr4d 311 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
8685exp32 420 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) → (𝐹:𝐼𝐵 → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))))
87863impia 1117 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇)))
886, 14, 87pm5.21ndd 379 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  Vcvv 3438  cdif 3902  wss 3905  {csn 4579   class class class wbr 5095  ran crn 5624  cima 5626  ccom 5627   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353  Basecbs 17139  Scalarcsca 17183   ·𝑠 cvsca 17184  0gc0g 17362  LModclmod 20782  LSpanclspn 20893   LMHom clmhm 20942   LIndF clindf 21730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-sbg 18836  df-subg 19021  df-ghm 19111  df-mgp 20045  df-ur 20086  df-ring 20139  df-lmod 20784  df-lss 20854  df-lsp 20894  df-lmhm 20945  df-lindf 21732
This theorem is referenced by:  lindsmm  21754
  Copyright terms: Public domain W3C validator