| Step | Hyp | Ref
| Expression |
| 1 | | rellindf 21768 |
. . . . 5
⊢ Rel
LIndF |
| 2 | 1 | brrelex1i 5710 |
. . . 4
⊢ (𝐹 LIndF 𝑆 → 𝐹 ∈ V) |
| 3 | | simp3 1138 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → 𝐹:𝐼⟶𝐵) |
| 4 | | dmfex 7901 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐼⟶𝐵) → 𝐼 ∈ V) |
| 5 | 2, 3, 4 | syl2anr 597 |
. . 3
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) ∧ 𝐹 LIndF 𝑆) → 𝐼 ∈ V) |
| 6 | 5 | ex 412 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 → 𝐼 ∈ V)) |
| 7 | 1 | brrelex1i 5710 |
. . . 4
⊢ ((𝐺 ∘ 𝐹) LIndF 𝑇 → (𝐺 ∘ 𝐹) ∈ V) |
| 8 | | f1f 6774 |
. . . . . 6
⊢ (𝐺:𝐵–1-1→𝐶 → 𝐺:𝐵⟶𝐶) |
| 9 | | fco 6730 |
. . . . . 6
⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
| 10 | 8, 9 | sylan 580 |
. . . . 5
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
| 11 | 10 | 3adant1 1130 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
| 12 | | dmfex 7901 |
. . . 4
⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ (𝐺 ∘ 𝐹):𝐼⟶𝐶) → 𝐼 ∈ V) |
| 13 | 7, 11, 12 | syl2anr 597 |
. . 3
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) ∧ (𝐺 ∘ 𝐹) LIndF 𝑇) → 𝐼 ∈ V) |
| 14 | 13 | ex 412 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → ((𝐺 ∘ 𝐹) LIndF 𝑇 → 𝐼 ∈ V)) |
| 15 | | eldifi 4106 |
. . . . . . . . 9
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) → 𝑘 ∈ (Base‘(Scalar‘𝑆))) |
| 16 | | simpllr 775 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺:𝐵–1-1→𝐶) |
| 17 | | lmhmlmod1 20991 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 18 | 17 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑆 ∈ LMod) |
| 19 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑘 ∈ (Base‘(Scalar‘𝑆))) |
| 20 | | simprl 770 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝐹:𝐼⟶𝐵) |
| 21 | | simpl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → 𝑥 ∈ 𝐼) |
| 22 | | ffvelcdm 7071 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐼⟶𝐵 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ 𝐵) |
| 23 | 20, 21, 22 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹‘𝑥) ∈ 𝐵) |
| 24 | | lindfmm.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝑆) |
| 25 | | eqid 2735 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
| 26 | | eqid 2735 |
. . . . . . . . . . . . . . 15
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
| 27 | | eqid 2735 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
| 28 | 24, 25, 26, 27 | lmodvscl 20835 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑆)) ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ 𝐵) |
| 29 | 18, 19, 23, 28 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ 𝐵) |
| 30 | | imassrn 6058 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝐹 |
| 31 | | frn 6713 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐼⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
| 32 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V) → ran 𝐹 ⊆ 𝐵) |
| 33 | 30, 32 | sstrid 3970 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) |
| 34 | 33 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) |
| 35 | | eqid 2735 |
. . . . . . . . . . . . . . 15
⊢
(LSpan‘𝑆) =
(LSpan‘𝑆) |
| 36 | 24, 35 | lspssv 20940 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) |
| 37 | 18, 34, 36 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) |
| 38 | | f1elima 7256 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ 𝐵 ∧ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) → ((𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
| 39 | 16, 29, 37, 38 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
| 40 | | simplll 774 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺 ∈ (𝑆 LMHom 𝑇)) |
| 41 | | eqid 2735 |
. . . . . . . . . . . . . . . 16
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
| 42 | 25, 27, 24, 26, 41 | lmhmlin 20993 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) = (𝑘( ·𝑠
‘𝑇)(𝐺‘(𝐹‘𝑥)))) |
| 43 | 40, 19, 23, 42 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) = (𝑘( ·𝑠
‘𝑇)(𝐺‘(𝐹‘𝑥)))) |
| 44 | | ffn 6706 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) |
| 45 | 44 | ad2antrl 728 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝐹 Fn 𝐼) |
| 46 | | fvco2 6976 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 47 | 45, 21, 46 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
| 48 | 47 | oveq2d 7421 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) = (𝑘( ·𝑠
‘𝑇)(𝐺‘(𝐹‘𝑥)))) |
| 49 | 43, 48 | eqtr4d 2773 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) = (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥))) |
| 50 | | eqid 2735 |
. . . . . . . . . . . . . . . 16
⊢
(LSpan‘𝑇) =
(LSpan‘𝑇) |
| 51 | 24, 35, 50 | lmhmlsp 21007 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))) |
| 52 | 40, 34, 51 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))) |
| 53 | | imaco 6240 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥})) = (𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))) |
| 54 | 53 | fveq2i 6879 |
. . . . . . . . . . . . . 14
⊢
((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))) |
| 55 | 52, 54 | eqtr4di 2788 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥})))) |
| 56 | 49, 55 | eleq12d 2828 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 57 | 39, 56 | bitr3d 281 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 58 | 57 | notbid 318 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (¬ (𝑘(
·𝑠 ‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 59 | 58 | anassrs 467 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → (¬ (𝑘(
·𝑠 ‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 60 | 15, 59 | sylan2 593 |
. . . . . . . 8
⊢
(((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))})) → (¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 61 | 60 | ralbidva 3161 |
. . . . . . 7
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 62 | | eqid 2735 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
| 63 | 25, 62 | lmhmsca 20988 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
| 64 | 63 | fveq2d 6880 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑇)) =
(Base‘(Scalar‘𝑆))) |
| 65 | 63 | fveq2d 6880 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) →
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑆))) |
| 66 | 65 | sneqd 4613 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) →
{(0g‘(Scalar‘𝑇))} =
{(0g‘(Scalar‘𝑆))}) |
| 67 | 64, 66 | difeq12d 4102 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))})) |
| 68 | 67 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))})) |
| 69 | 68 | raleqdv 3305 |
. . . . . . 7
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 70 | 61, 69 | bitr4d 282 |
. . . . . 6
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 71 | 70 | ralbidva 3161 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 72 | 17 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝑆 ∈ LMod) |
| 73 | | simprr 772 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝐼 ∈ V) |
| 74 | | eqid 2735 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑆)) =
(0g‘(Scalar‘𝑆)) |
| 75 | 24, 26, 35, 25, 27, 74 | islindf2 21774 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
| 76 | 72, 73, 20, 75 | syl3anc 1373 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
| 77 | | lmhmlmod2 20990 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
| 78 | 77 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝑇 ∈ LMod) |
| 79 | 10 | ad2ant2lr 748 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
| 80 | | lindfmm.c |
. . . . . . 7
⊢ 𝐶 = (Base‘𝑇) |
| 81 | | eqid 2735 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
| 82 | | eqid 2735 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑇)) |
| 83 | 80, 41, 50, 62, 81, 82 | islindf2 21774 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ (𝐺 ∘ 𝐹):𝐼⟶𝐶) → ((𝐺 ∘ 𝐹) LIndF 𝑇 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 84 | 78, 73, 79, 83 | syl3anc 1373 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → ((𝐺 ∘ 𝐹) LIndF 𝑇 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
| 85 | 71, 76, 84 | 3bitr4d 311 |
. . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) |
| 86 | 85 | exp32 420 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) → (𝐹:𝐼⟶𝐵 → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)))) |
| 87 | 86 | 3impia 1117 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇))) |
| 88 | 6, 14, 87 | pm5.21ndd 379 |
1
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) |