MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfmm Structured version   Visualization version   GIF version

Theorem lindfmm 21759
Description: Linear independence of a family is unchanged by injective linear functions. (Contributed by Stefan O'Rear, 26-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lindfmm.b 𝐵 = (Base‘𝑆)
lindfmm.c 𝐶 = (Base‘𝑇)
Assertion
Ref Expression
lindfmm ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))

Proof of Theorem lindfmm
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 21740 . . . . 5 Rel LIndF
21brrelex1i 5667 . . . 4 (𝐹 LIndF 𝑆𝐹 ∈ V)
3 simp3 1138 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → 𝐹:𝐼𝐵)
4 dmfex 7830 . . . 4 ((𝐹 ∈ V ∧ 𝐹:𝐼𝐵) → 𝐼 ∈ V)
52, 3, 4syl2anr 597 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ 𝐹 LIndF 𝑆) → 𝐼 ∈ V)
65ex 412 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆𝐼 ∈ V))
71brrelex1i 5667 . . . 4 ((𝐺𝐹) LIndF 𝑇 → (𝐺𝐹) ∈ V)
8 f1f 6714 . . . . . 6 (𝐺:𝐵1-1𝐶𝐺:𝐵𝐶)
9 fco 6670 . . . . . 6 ((𝐺:𝐵𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
108, 9sylan 580 . . . . 5 ((𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
11103adant1 1130 . . . 4 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐺𝐹):𝐼𝐶)
12 dmfex 7830 . . . 4 (((𝐺𝐹) ∈ V ∧ (𝐺𝐹):𝐼𝐶) → 𝐼 ∈ V)
137, 11, 12syl2anr 597 . . 3 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) ∧ (𝐺𝐹) LIndF 𝑇) → 𝐼 ∈ V)
1413ex 412 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → ((𝐺𝐹) LIndF 𝑇𝐼 ∈ V))
15 eldifi 4076 . . . . . . . . 9 (𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
16 simpllr 775 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺:𝐵1-1𝐶)
17 lmhmlmod1 20962 . . . . . . . . . . . . . . 15 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
1817ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑆 ∈ LMod)
19 simprr 772 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑘 ∈ (Base‘(Scalar‘𝑆)))
20 simprl 770 . . . . . . . . . . . . . . 15 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹:𝐼𝐵)
21 simpl 482 . . . . . . . . . . . . . . 15 ((𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆))) → 𝑥𝐼)
22 ffvelcdm 7009 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝑥𝐼) → (𝐹𝑥) ∈ 𝐵)
2320, 21, 22syl2an 596 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹𝑥) ∈ 𝐵)
24 lindfmm.b . . . . . . . . . . . . . . 15 𝐵 = (Base‘𝑆)
25 eqid 2731 . . . . . . . . . . . . . . 15 (Scalar‘𝑆) = (Scalar‘𝑆)
26 eqid 2731 . . . . . . . . . . . . . . 15 ( ·𝑠𝑆) = ( ·𝑠𝑆)
27 eqid 2731 . . . . . . . . . . . . . . 15 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
2824, 25, 26, 27lmodvscl 20806 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
2918, 19, 23, 28syl3anc 1373 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵)
30 imassrn 6015 . . . . . . . . . . . . . . . 16 (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝐹
31 frn 6653 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵 → ran 𝐹𝐵)
3231adantr 480 . . . . . . . . . . . . . . . 16 ((𝐹:𝐼𝐵𝐼 ∈ V) → ran 𝐹𝐵)
3330, 32sstrid 3941 . . . . . . . . . . . . . . 15 ((𝐹:𝐼𝐵𝐼 ∈ V) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
3433ad2antlr 727 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵)
35 eqid 2731 . . . . . . . . . . . . . . 15 (LSpan‘𝑆) = (LSpan‘𝑆)
3624, 35lspssv 20911 . . . . . . . . . . . . . 14 ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
3718, 34, 36syl2anc 584 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵)
38 f1elima 7192 . . . . . . . . . . . . 13 ((𝐺:𝐵1-1𝐶 ∧ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ 𝐵 ∧ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
3916, 29, 37, 38syl3anc 1373 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
40 simplll 774 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺 ∈ (𝑆 LMHom 𝑇))
41 eqid 2731 . . . . . . . . . . . . . . . 16 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4225, 27, 24, 26, 41lmhmlin 20964 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹𝑥) ∈ 𝐵) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4340, 19, 23, 42syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
44 ffn 6646 . . . . . . . . . . . . . . . . 17 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
4544ad2antrl 728 . . . . . . . . . . . . . . . 16 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐹 Fn 𝐼)
46 fvco2 6914 . . . . . . . . . . . . . . . 16 ((𝐹 Fn 𝐼𝑥𝐼) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4745, 21, 46syl2an 596 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺𝐹)‘𝑥) = (𝐺‘(𝐹𝑥)))
4847oveq2d 7357 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) = (𝑘( ·𝑠𝑇)(𝐺‘(𝐹𝑥))))
4943, 48eqtr4d 2769 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) = (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)))
50 eqid 2731 . . . . . . . . . . . . . . . 16 (LSpan‘𝑇) = (LSpan‘𝑇)
5124, 35, 50lmhmlsp 20978 . . . . . . . . . . . . . . 15 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
5240, 34, 51syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))))
53 imaco 6193 . . . . . . . . . . . . . . 15 ((𝐺𝐹) “ (𝐼 ∖ {𝑥})) = (𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))
5453fveq2i 6820 . . . . . . . . . . . . . 14 ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))
5552, 54eqtr4di 2784 . . . . . . . . . . . . 13 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))))
5649, 55eleq12d 2825 . . . . . . . . . . . 12 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠𝑆)(𝐹𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5739, 56bitr3d 281 . . . . . . . . . . 11 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5857notbid 318 . . . . . . . . . 10 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ (𝑥𝐼𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
5958anassrs 467 . . . . . . . . 9 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6015, 59sylan2 593 . . . . . . . 8 (((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))})) → (¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
6160ralbidva 3153 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
62 eqid 2731 . . . . . . . . . . . 12 (Scalar‘𝑇) = (Scalar‘𝑇)
6325, 62lmhmsca 20959 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
6463fveq2d 6821 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑆)))
6563fveq2d 6821 . . . . . . . . . . 11 (𝐺 ∈ (𝑆 LMHom 𝑇) → (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑆)))
6665sneqd 4583 . . . . . . . . . 10 (𝐺 ∈ (𝑆 LMHom 𝑇) → {(0g‘(Scalar‘𝑇))} = {(0g‘(Scalar‘𝑆))})
6764, 66difeq12d 4072 . . . . . . . . 9 (𝐺 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6867ad3antrrr 730 . . . . . . . 8 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}))
6968raleqdv 3292 . . . . . . 7 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7061, 69bitr4d 282 . . . . . 6 ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) ∧ 𝑥𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7170ralbidva 3153 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
7217ad2antrr 726 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑆 ∈ LMod)
73 simprr 772 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝐼 ∈ V)
74 eqid 2731 . . . . . . 7 (0g‘(Scalar‘𝑆)) = (0g‘(Scalar‘𝑆))
7524, 26, 35, 25, 27, 74islindf2 21746 . . . . . 6 ((𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
7672, 73, 20, 75syl3anc 1373 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖ {(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠𝑆)(𝐹𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))))
77 lmhmlmod2 20961 . . . . . . 7 (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
7877ad2antrr 726 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → 𝑇 ∈ LMod)
7910ad2ant2lr 748 . . . . . 6 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐺𝐹):𝐼𝐶)
80 lindfmm.c . . . . . . 7 𝐶 = (Base‘𝑇)
81 eqid 2731 . . . . . . 7 (Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇))
82 eqid 2731 . . . . . . 7 (0g‘(Scalar‘𝑇)) = (0g‘(Scalar‘𝑇))
8380, 41, 50, 62, 81, 82islindf2 21746 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ (𝐺𝐹):𝐼𝐶) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8478, 73, 79, 83syl3anc 1373 . . . . 5 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → ((𝐺𝐹) LIndF 𝑇 ↔ ∀𝑥𝐼𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖ {(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠𝑇)((𝐺𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺𝐹) “ (𝐼 ∖ {𝑥})))))
8571, 76, 843bitr4d 311 . . . 4 (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) ∧ (𝐹:𝐼𝐵𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
8685exp32 420 . . 3 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶) → (𝐹:𝐼𝐵 → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))))
87863impia 1117 . 2 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇)))
886, 14, 87pm5.21ndd 379 1 ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵1-1𝐶𝐹:𝐼𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺𝐹) LIndF 𝑇))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  wss 3897  {csn 4571   class class class wbr 5086  ran crn 5612  cima 5614  ccom 5615   Fn wfn 6471  wf 6472  1-1wf1 6473  cfv 6476  (class class class)co 7341  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  0gc0g 17338  LModclmod 20788  LSpanclspn 20899   LMHom clmhm 20948   LIndF clindf 21736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-0g 17340  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-ghm 19120  df-mgp 20054  df-ur 20095  df-ring 20148  df-lmod 20790  df-lss 20860  df-lsp 20900  df-lmhm 20951  df-lindf 21738
This theorem is referenced by:  lindsmm  21760
  Copyright terms: Public domain W3C validator