Step | Hyp | Ref
| Expression |
1 | | rellindf 21015 |
. . . . 5
⊢ Rel
LIndF |
2 | 1 | brrelex1i 5643 |
. . . 4
⊢ (𝐹 LIndF 𝑆 → 𝐹 ∈ V) |
3 | | simp3 1137 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → 𝐹:𝐼⟶𝐵) |
4 | | dmfex 7754 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐹:𝐼⟶𝐵) → 𝐼 ∈ V) |
5 | 2, 3, 4 | syl2anr 597 |
. . 3
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) ∧ 𝐹 LIndF 𝑆) → 𝐼 ∈ V) |
6 | 5 | ex 413 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 → 𝐼 ∈ V)) |
7 | 1 | brrelex1i 5643 |
. . . 4
⊢ ((𝐺 ∘ 𝐹) LIndF 𝑇 → (𝐺 ∘ 𝐹) ∈ V) |
8 | | f1f 6670 |
. . . . . 6
⊢ (𝐺:𝐵–1-1→𝐶 → 𝐺:𝐵⟶𝐶) |
9 | | fco 6624 |
. . . . . 6
⊢ ((𝐺:𝐵⟶𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
10 | 8, 9 | sylan 580 |
. . . . 5
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
11 | 10 | 3adant1 1129 |
. . . 4
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
12 | | dmfex 7754 |
. . . 4
⊢ (((𝐺 ∘ 𝐹) ∈ V ∧ (𝐺 ∘ 𝐹):𝐼⟶𝐶) → 𝐼 ∈ V) |
13 | 7, 11, 12 | syl2anr 597 |
. . 3
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) ∧ (𝐺 ∘ 𝐹) LIndF 𝑇) → 𝐼 ∈ V) |
14 | 13 | ex 413 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → ((𝐺 ∘ 𝐹) LIndF 𝑇 → 𝐼 ∈ V)) |
15 | | eldifi 4061 |
. . . . . . . . 9
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) → 𝑘 ∈ (Base‘(Scalar‘𝑆))) |
16 | | simpllr 773 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺:𝐵–1-1→𝐶) |
17 | | lmhmlmod1 20295 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
18 | 17 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑆 ∈ LMod) |
19 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝑘 ∈ (Base‘(Scalar‘𝑆))) |
20 | | simprl 768 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝐹:𝐼⟶𝐵) |
21 | | simpl 483 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → 𝑥 ∈ 𝐼) |
22 | | ffvelrn 6959 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐼⟶𝐵 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ 𝐵) |
23 | 20, 21, 22 | syl2an 596 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹‘𝑥) ∈ 𝐵) |
24 | | lindfmm.b |
. . . . . . . . . . . . . . 15
⊢ 𝐵 = (Base‘𝑆) |
25 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
26 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
27 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
28 | 24, 25, 26, 27 | lmodvscl 20140 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ LMod ∧ 𝑘 ∈
(Base‘(Scalar‘𝑆)) ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ 𝐵) |
29 | 18, 19, 23, 28 | syl3anc 1370 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ 𝐵) |
30 | | imassrn 5980 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ ran 𝐹 |
31 | | frn 6607 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐼⟶𝐵 → ran 𝐹 ⊆ 𝐵) |
32 | 31 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V) → ran 𝐹 ⊆ 𝐵) |
33 | 30, 32 | sstrid 3932 |
. . . . . . . . . . . . . . 15
⊢ ((𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) |
34 | 33 | ad2antlr 724 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(LSpan‘𝑆) =
(LSpan‘𝑆) |
36 | 24, 35 | lspssv 20245 |
. . . . . . . . . . . . . 14
⊢ ((𝑆 ∈ LMod ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) |
37 | 18, 34, 36 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) |
38 | | f1elima 7136 |
. . . . . . . . . . . . 13
⊢ ((𝐺:𝐵–1-1→𝐶 ∧ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ 𝐵 ∧ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ⊆ 𝐵) → ((𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
39 | 16, 29, 37, 38 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
40 | | simplll 772 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → 𝐺 ∈ (𝑆 LMHom 𝑇)) |
41 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
42 | 25, 27, 24, 26, 41 | lmhmlin 20297 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)) ∧ (𝐹‘𝑥) ∈ 𝐵) → (𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) = (𝑘( ·𝑠
‘𝑇)(𝐺‘(𝐹‘𝑥)))) |
43 | 40, 19, 23, 42 | syl3anc 1370 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) = (𝑘( ·𝑠
‘𝑇)(𝐺‘(𝐹‘𝑥)))) |
44 | | ffn 6600 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) |
45 | 44 | ad2antrl 725 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝐹 Fn 𝐼) |
46 | | fvco2 6865 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐹 Fn 𝐼 ∧ 𝑥 ∈ 𝐼) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
47 | 45, 21, 46 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺 ∘ 𝐹)‘𝑥) = (𝐺‘(𝐹‘𝑥))) |
48 | 47 | oveq2d 7291 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) = (𝑘( ·𝑠
‘𝑇)(𝐺‘(𝐹‘𝑥)))) |
49 | 43, 48 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) = (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥))) |
50 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢
(LSpan‘𝑇) =
(LSpan‘𝑇) |
51 | 24, 35, 50 | lmhmlsp 20311 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ (𝐹 “ (𝐼 ∖ {𝑥})) ⊆ 𝐵) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))) |
52 | 40, 34, 51 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))))) |
53 | | imaco 6155 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥})) = (𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥}))) |
54 | 53 | fveq2i 6777 |
. . . . . . . . . . . . . 14
⊢
((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))) = ((LSpan‘𝑇)‘(𝐺 “ (𝐹 “ (𝐼 ∖ {𝑥})))) |
55 | 52, 54 | eqtr4di 2796 |
. . . . . . . . . . . . 13
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) = ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥})))) |
56 | 49, 55 | eleq12d 2833 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝐺‘(𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥))) ∈ (𝐺 “ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥})))) ↔ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
57 | 39, 56 | bitr3d 280 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → ((𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
58 | 57 | notbid 318 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ (𝑥 ∈ 𝐼 ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆)))) → (¬ (𝑘(
·𝑠 ‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
59 | 58 | anassrs 468 |
. . . . . . . . 9
⊢
(((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑆))) → (¬ (𝑘(
·𝑠 ‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
60 | 15, 59 | sylan2 593 |
. . . . . . . 8
⊢
(((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))})) → (¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
61 | 60 | ralbidva 3111 |
. . . . . . 7
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
62 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
63 | 25, 62 | lmhmsca 20292 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
64 | 63 | fveq2d 6778 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → (Base‘(Scalar‘𝑇)) =
(Base‘(Scalar‘𝑆))) |
65 | 63 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) →
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑆))) |
66 | 65 | sneqd 4573 |
. . . . . . . . . 10
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) →
{(0g‘(Scalar‘𝑇))} =
{(0g‘(Scalar‘𝑆))}) |
67 | 64, 66 | difeq12d 4058 |
. . . . . . . . 9
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))})) |
68 | 67 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) = ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))})) |
69 | 68 | raleqdv 3348 |
. . . . . . 7
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
70 | 61, 69 | bitr4d 281 |
. . . . . 6
⊢ ((((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) ∧ 𝑥 ∈ 𝐼) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
71 | 70 | ralbidva 3111 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))) ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
72 | 17 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝑆 ∈ LMod) |
73 | | simprr 770 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝐼 ∈ V) |
74 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑆)) =
(0g‘(Scalar‘𝑆)) |
75 | 24, 26, 35, 25, 27, 74 | islindf2 21021 |
. . . . . 6
⊢ ((𝑆 ∈ LMod ∧ 𝐼 ∈ V ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
76 | 72, 73, 20, 75 | syl3anc 1370 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑆)) ∖
{(0g‘(Scalar‘𝑆))}) ¬ (𝑘( ·𝑠
‘𝑆)(𝐹‘𝑥)) ∈ ((LSpan‘𝑆)‘(𝐹 “ (𝐼 ∖ {𝑥}))))) |
77 | | lmhmlmod2 20294 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod) |
78 | 77 | ad2antrr 723 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → 𝑇 ∈ LMod) |
79 | 10 | ad2ant2lr 745 |
. . . . . 6
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (𝐺 ∘ 𝐹):𝐼⟶𝐶) |
80 | | lindfmm.c |
. . . . . . 7
⊢ 𝐶 = (Base‘𝑇) |
81 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(Scalar‘𝑇)) = (Base‘(Scalar‘𝑇)) |
82 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘(Scalar‘𝑇)) =
(0g‘(Scalar‘𝑇)) |
83 | 80, 41, 50, 62, 81, 82 | islindf2 21021 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ 𝐼 ∈ V ∧ (𝐺 ∘ 𝐹):𝐼⟶𝐶) → ((𝐺 ∘ 𝐹) LIndF 𝑇 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
84 | 78, 73, 79, 83 | syl3anc 1370 |
. . . . 5
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → ((𝐺 ∘ 𝐹) LIndF 𝑇 ↔ ∀𝑥 ∈ 𝐼 ∀𝑘 ∈ ((Base‘(Scalar‘𝑇)) ∖
{(0g‘(Scalar‘𝑇))}) ¬ (𝑘( ·𝑠
‘𝑇)((𝐺 ∘ 𝐹)‘𝑥)) ∈ ((LSpan‘𝑇)‘((𝐺 ∘ 𝐹) “ (𝐼 ∖ {𝑥}))))) |
85 | 71, 76, 84 | 3bitr4d 311 |
. . . 4
⊢ (((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) ∧ (𝐹:𝐼⟶𝐵 ∧ 𝐼 ∈ V)) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) |
86 | 85 | exp32 421 |
. . 3
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶) → (𝐹:𝐼⟶𝐵 → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)))) |
87 | 86 | 3impia 1116 |
. 2
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐼 ∈ V → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇))) |
88 | 6, 14, 87 | pm5.21ndd 381 |
1
⊢ ((𝐺 ∈ (𝑆 LMHom 𝑇) ∧ 𝐺:𝐵–1-1→𝐶 ∧ 𝐹:𝐼⟶𝐵) → (𝐹 LIndF 𝑆 ↔ (𝐺 ∘ 𝐹) LIndF 𝑇)) |