Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex1 5639 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 686 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3430 class class class wbr 5078 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 |
This theorem is referenced by: nprrel 5645 opeliunxp2 5744 ideqg 5757 issetid 5760 dffv2 6857 brfvopabrbr 6866 brrpssg 7569 opeliunxp2f 8010 brtpos2 8032 brdomg 8719 ctex 8724 isfi 8735 en1unielOLD 8789 domdifsn 8811 undom 8816 xpdom2 8823 xpdom1g 8825 sucdom2 8838 sbth 8849 dom0 8857 sdom0 8861 sdomirr 8866 sdomdif 8877 fodomr 8880 pwdom 8881 xpen 8892 pwen 8902 sbthfi 8950 php3OLD 8972 sdom1 8984 fineqv 8999 f1finf1o 9007 infsdomnn 9036 relprcnfsupp 9092 fsuppunbi 9110 mapfien2 9129 harword 9283 brwdom 9287 domwdom 9294 brwdom3i 9303 unwdomg 9304 xpwdomg 9305 infdifsn 9376 ac10ct 9774 inffien 9803 djuen 9909 djudom2 9923 djufi 9926 cdainflem 9927 djulepw 9932 infdjuabs 9946 infunabs 9947 infmap2 9958 cfslb2n 10008 fin4i 10038 isfin5 10039 isfin6 10040 fin4en1 10049 isfin4p1 10055 isfin32i 10105 fin45 10132 fin56 10133 fin67 10135 hsmexlem1 10166 hsmexlem3 10168 axcc3 10178 ttukeylem1 10249 brdom3 10268 iundom2g 10280 iundom 10282 gchi 10364 engch 10368 gchdomtri 10369 fpwwe2lem5 10375 fpwwe2lem6 10376 fpwwe2lem8 10378 gchdjuidm 10408 gchpwdom 10410 prcdnq 10733 reexALT 12706 hasheni 14043 hashdomi 14076 climcl 15189 climi 15200 climrlim2 15237 climrecl 15273 climge0 15274 iseralt 15377 climfsum 15513 structex 16832 issubc 17531 pmtrfv 19041 dprdval 19587 frgpcyg 20762 lindff 21003 lindfind 21004 f1lindf 21010 lindfmm 21015 lsslindf 21018 lbslcic 21029 psrbaglesupp 21108 hauspwdom 22633 refbas 22642 refssex 22643 reftr 22646 refun0 22647 ovoliunnul 24652 dvle 25152 cyclnspth 28147 hlimi 29529 gsumhashmul 31295 extdgval 31708 usgrgt2cycl 33071 brsset 34170 brbigcup 34179 elfix2 34185 brcolinear2 34339 isfne 34507 refssfne 34526 bj-epelg 35218 bj-ideqb 35309 bj-opelidb1ALT 35316 ovoliunnfl 35798 voliunnfl 35800 volsupnfl 35801 brabg2 35853 heiborlem4 35951 isrngo 36034 isdivrngo 36087 brssr 36598 issetssr 36600 fphpd 40618 ctbnfien 40620 climd 43167 climuzlem 43238 rlimdmafv 44620 rlimdmafv2 44701 |
Copyright terms: Public domain | W3C validator |