| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex1 5691 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 |
| This theorem is referenced by: nprrel 5697 opeliunxp2 5802 ideqg 5815 issetid 5818 dffv2 6956 brfvopabrbr 6965 brrpssg 7701 opeliunxp2f 8189 brtpos2 8211 brdomg 8930 ctex 8935 isfi 8947 domssr 8970 domdifsn 9024 xpdom2 9036 xpdom1g 9038 sbth 9061 sdomirr 9078 sdomdif 9089 fodomr 9092 pwdom 9093 xpen 9104 pwen 9114 sbthfi 9163 sucdom2 9167 sdom1OLD 9190 fineqv 9210 f1finf1oOLD 9217 infsdomnn 9249 infsdomnnOLD 9250 relprcnfsupp 9315 fsuppssov1 9335 fsuppunbi 9340 mapfien2 9360 harword 9516 brwdom 9520 domwdom 9527 brwdom3i 9536 unwdomg 9537 xpwdomg 9538 infdifsn 9610 ac10ct 9987 inffien 10016 djuen 10123 djudom2 10137 djufi 10140 cdainflem 10141 djulepw 10146 infdjuabs 10158 infunabs 10159 infmap2 10170 cfslb2n 10221 fin4i 10251 isfin5 10252 isfin6 10253 fin4en1 10262 isfin4p1 10268 isfin32i 10318 fin45 10345 fin56 10346 fin67 10348 hsmexlem1 10379 hsmexlem3 10381 axcc3 10391 ttukeylem1 10462 brdom3 10481 iundom2g 10493 iundom 10495 gchi 10577 engch 10581 gchdomtri 10582 fpwwe2lem5 10588 fpwwe2lem6 10589 fpwwe2lem8 10591 gchdjuidm 10621 gchpwdom 10623 prcdnq 10946 reexALT 12943 hasheni 14313 hashdomi 14345 climcl 15465 climi 15476 climrlim2 15513 climrecl 15549 climge0 15550 iseralt 15651 climfsum 15786 structex 17120 issubc 17797 pmtrfv 19382 dprdval 19935 frgpcyg 21483 lindff 21724 lindfind 21725 f1lindf 21731 lindfmm 21736 lsslindf 21739 lbslcic 21750 psrbaglesupp 21831 hauspwdom 23388 refbas 23397 refssex 23398 reftr 23401 refun0 23402 ovoliunnul 25408 dvle 25912 cyclnspth 29731 hlimi 31117 gsumhashmul 33001 extdgval 33649 usgrgt2cycl 35117 brsset 35877 brbigcup 35886 elfix2 35892 brcolinear2 36046 isfne 36327 refssfne 36346 bj-epelg 37056 bj-ideqb 37147 bj-opelidb1ALT 37154 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 brabg2 37711 heiborlem4 37808 isrngo 37891 isdivrngo 37944 brssr 38492 issetssr 38494 fphpd 42804 ctbnfien 42806 sdomne0 43402 climd 45670 climuzlem 45741 rlimdmafv 47178 rlimdmafv2 47259 imasubc 49140 imassc 49142 imaid 49143 imaf1co 49144 imasubc3 49145 fuco112 49318 fuco111 49319 fuco21 49325 fucoid 49337 |
| Copyright terms: Public domain | W3C validator |