![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex1 5753 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: nprrel 5759 opeliunxp2 5863 ideqg 5876 issetid 5879 dffv2 7017 brfvopabrbr 7026 brrpssg 7760 opeliunxp2f 8251 brtpos2 8273 brdomg 9016 brdomgOLD 9017 ctex 9023 isfi 9036 domssr 9059 en1unielOLD 9094 domdifsn 9120 undomOLD 9126 xpdom2 9133 xpdom1g 9135 sucdom2OLD 9148 sbth 9159 dom0OLD 9169 sdom0OLD 9175 sdomirr 9180 sdomdif 9191 fodomr 9194 pwdom 9195 xpen 9206 pwen 9216 sbthfi 9265 sucdom2 9269 php3OLD 9287 sdom1OLD 9306 fineqv 9326 f1finf1oOLD 9334 infsdomnn 9366 infsdomnnOLD 9367 relprcnfsupp 9434 fsuppssov1 9453 fsuppunbi 9458 mapfien2 9478 harword 9632 brwdom 9636 domwdom 9643 brwdom3i 9652 unwdomg 9653 xpwdomg 9654 infdifsn 9726 ac10ct 10103 inffien 10132 djuen 10239 djudom2 10253 djufi 10256 cdainflem 10257 djulepw 10262 infdjuabs 10274 infunabs 10275 infmap2 10286 cfslb2n 10337 fin4i 10367 isfin5 10368 isfin6 10369 fin4en1 10378 isfin4p1 10384 isfin32i 10434 fin45 10461 fin56 10462 fin67 10464 hsmexlem1 10495 hsmexlem3 10497 axcc3 10507 ttukeylem1 10578 brdom3 10597 iundom2g 10609 iundom 10611 gchi 10693 engch 10697 gchdomtri 10698 fpwwe2lem5 10704 fpwwe2lem6 10705 fpwwe2lem8 10707 gchdjuidm 10737 gchpwdom 10739 prcdnq 11062 reexALT 13049 hasheni 14397 hashdomi 14429 climcl 15545 climi 15556 climrlim2 15593 climrecl 15629 climge0 15630 iseralt 15733 climfsum 15868 structex 17197 issubc 17899 pmtrfv 19494 dprdval 20047 frgpcyg 21615 lindff 21858 lindfind 21859 f1lindf 21865 lindfmm 21870 lsslindf 21873 lbslcic 21884 psrbaglesupp 21965 hauspwdom 23530 refbas 23539 refssex 23540 reftr 23543 refun0 23544 ovoliunnul 25561 dvle 26066 cyclnspth 29836 hlimi 31220 gsumhashmul 33040 extdgval 33667 usgrgt2cycl 35098 brsset 35853 brbigcup 35862 elfix2 35868 brcolinear2 36022 isfne 36305 refssfne 36324 bj-epelg 37034 bj-ideqb 37125 bj-opelidb1ALT 37132 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 brabg2 37677 heiborlem4 37774 isrngo 37857 isdivrngo 37910 brssr 38457 issetssr 38459 fphpd 42772 ctbnfien 42774 sdomne0 43375 climd 45593 climuzlem 45664 rlimdmafv 47092 rlimdmafv2 47173 |
Copyright terms: Public domain | W3C validator |