| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex1 5672 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: nprrel 5678 opeliunxp2 5781 ideqg 5794 issetid 5797 dffv2 6918 brfvopabrbr 6927 brrpssg 7661 opeliunxp2f 8143 brtpos2 8165 brdomg 8884 ctex 8889 isfi 8901 domssr 8924 domdifsn 8977 xpdom2 8989 xpdom1g 8991 sbth 9014 sdomirr 9031 sdomdif 9042 fodomr 9045 pwdom 9046 xpen 9057 pwen 9067 sbthfi 9113 sucdom2 9117 fineqv 9156 infsdomnn 9190 relprcnfsupp 9254 fsuppssov1 9274 fsuppunbi 9279 mapfien2 9299 harword 9455 brwdom 9459 domwdom 9466 brwdom3i 9475 unwdomg 9476 xpwdomg 9477 infdifsn 9553 ac10ct 9928 inffien 9957 djuen 10064 djudom2 10078 djufi 10081 cdainflem 10082 djulepw 10087 infdjuabs 10099 infunabs 10100 infmap2 10111 cfslb2n 10162 fin4i 10192 isfin5 10193 isfin6 10194 fin4en1 10203 isfin4p1 10209 isfin32i 10259 fin45 10286 fin56 10287 fin67 10289 hsmexlem1 10320 hsmexlem3 10322 axcc3 10332 ttukeylem1 10403 brdom3 10422 iundom2g 10434 iundom 10436 gchi 10518 engch 10522 gchdomtri 10523 fpwwe2lem5 10529 fpwwe2lem6 10530 fpwwe2lem8 10532 gchdjuidm 10562 gchpwdom 10564 prcdnq 10887 reexALT 12885 hasheni 14255 hashdomi 14287 climcl 15406 climi 15417 climrlim2 15454 climrecl 15490 climge0 15491 iseralt 15592 climfsum 15727 structex 17061 issubc 17742 pmtrfv 19331 dprdval 19884 frgpcyg 21480 lindff 21722 lindfind 21723 f1lindf 21729 lindfmm 21734 lsslindf 21737 lbslcic 21748 psrbaglesupp 21829 hauspwdom 23386 refbas 23395 refssex 23396 reftr 23399 refun0 23400 ovoliunnul 25406 dvle 25910 cyclnspth 29746 hlimi 31132 gsumhashmul 33015 extdgval 33626 finextfldext 33637 usgrgt2cycl 35113 brsset 35873 brbigcup 35882 elfix2 35888 brcolinear2 36042 isfne 36323 refssfne 36342 bj-epelg 37052 bj-ideqb 37143 bj-opelidb1ALT 37150 ovoliunnfl 37652 voliunnfl 37654 volsupnfl 37655 brabg2 37707 heiborlem4 37804 isrngo 37887 isdivrngo 37940 brssr 38488 issetssr 38490 fphpd 42799 ctbnfien 42801 sdomne0 43396 climd 45663 climuzlem 45734 rlimdmafv 47171 rlimdmafv2 47252 imasubc 49146 imassc 49148 imaid 49149 imaf1co 49150 imasubc3 49151 fuco112 49324 fuco111 49325 fuco21 49331 fucoid 49343 |
| Copyright terms: Public domain | W3C validator |