| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex1 5707 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: nprrel 5713 opeliunxp2 5818 ideqg 5831 issetid 5834 dffv2 6973 brfvopabrbr 6982 brrpssg 7717 opeliunxp2f 8207 brtpos2 8229 brdomg 8969 brdomgOLD 8970 ctex 8976 isfi 8988 domssr 9011 domdifsn 9066 undomOLD 9072 xpdom2 9079 xpdom1g 9081 sucdom2OLD 9094 sbth 9105 dom0OLD 9115 sdom0OLD 9121 sdomirr 9126 sdomdif 9137 fodomr 9140 pwdom 9141 xpen 9152 pwen 9162 sbthfi 9211 sucdom2 9215 php3OLD 9231 sdom1OLD 9249 fineqv 9269 f1finf1oOLD 9276 infsdomnn 9308 infsdomnnOLD 9309 relprcnfsupp 9374 fsuppssov1 9394 fsuppunbi 9399 mapfien2 9419 harword 9575 brwdom 9579 domwdom 9586 brwdom3i 9595 unwdomg 9596 xpwdomg 9597 infdifsn 9669 ac10ct 10046 inffien 10075 djuen 10182 djudom2 10196 djufi 10199 cdainflem 10200 djulepw 10205 infdjuabs 10217 infunabs 10218 infmap2 10229 cfslb2n 10280 fin4i 10310 isfin5 10311 isfin6 10312 fin4en1 10321 isfin4p1 10327 isfin32i 10377 fin45 10404 fin56 10405 fin67 10407 hsmexlem1 10438 hsmexlem3 10440 axcc3 10450 ttukeylem1 10521 brdom3 10540 iundom2g 10552 iundom 10554 gchi 10636 engch 10640 gchdomtri 10641 fpwwe2lem5 10647 fpwwe2lem6 10648 fpwwe2lem8 10650 gchdjuidm 10680 gchpwdom 10682 prcdnq 11005 reexALT 12998 hasheni 14364 hashdomi 14396 climcl 15513 climi 15524 climrlim2 15561 climrecl 15597 climge0 15598 iseralt 15699 climfsum 15834 structex 17167 issubc 17846 pmtrfv 19431 dprdval 19984 frgpcyg 21532 lindff 21773 lindfind 21774 f1lindf 21780 lindfmm 21785 lsslindf 21788 lbslcic 21799 psrbaglesupp 21880 hauspwdom 23437 refbas 23446 refssex 23447 reftr 23450 refun0 23451 ovoliunnul 25458 dvle 25962 cyclnspth 29729 hlimi 31115 gsumhashmul 33001 extdgval 33641 usgrgt2cycl 35098 brsset 35853 brbigcup 35862 elfix2 35868 brcolinear2 36022 isfne 36303 refssfne 36322 bj-epelg 37032 bj-ideqb 37123 bj-opelidb1ALT 37130 ovoliunnfl 37632 voliunnfl 37634 volsupnfl 37635 brabg2 37687 heiborlem4 37784 isrngo 37867 isdivrngo 37920 brssr 38465 issetssr 38467 fphpd 42786 ctbnfien 42788 sdomne0 43384 climd 45649 climuzlem 45720 rlimdmafv 47154 rlimdmafv2 47235 imasubc 49039 imassc 49041 imaid 49042 imaf1co 49043 imasubc3 49044 fuco112 49188 fuco111 49189 fuco21 49195 fucoid 49207 |
| Copyright terms: Public domain | W3C validator |