Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex1 5570 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2113 Vcvv 3397 class class class wbr 5027 Rel wrel 5524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-xp 5525 df-rel 5526 |
This theorem is referenced by: nprrel 5576 opeliunxp2 5675 ideqg 5688 issetid 5691 dffv2 6757 brfvopabrbr 6766 brrpssg 7463 opeliunxp2f 7898 brtpos2 7920 brdomg 8558 ctex 8563 isfi 8572 en1uniel 8621 domdifsn 8642 undom 8647 xpdom2 8654 xpdom1g 8656 sucdom2 8669 sbth 8680 dom0 8688 sdom0 8692 sdomirr 8697 sdomdif 8708 fodomr 8711 pwdom 8712 xpen 8723 pwen 8733 php3 8746 sdom1 8790 fineqv 8805 f1finf1o 8816 infsdomnn 8846 relprcnfsupp 8902 fsuppunbi 8920 mapfien2 8939 harword 9093 brwdom 9097 domwdom 9104 brwdom3i 9113 unwdomg 9114 xpwdomg 9115 infdifsn 9186 ac10ct 9527 inffien 9556 djuen 9662 djudom2 9676 djufi 9679 cdainflem 9680 djulepw 9685 infdjuabs 9699 infunabs 9700 infmap2 9711 cfslb2n 9761 fin4i 9791 isfin5 9792 isfin6 9793 fin4en1 9802 isfin4p1 9808 isfin32i 9858 fin45 9885 fin56 9886 fin67 9888 hsmexlem1 9919 hsmexlem3 9921 axcc3 9931 ttukeylem1 10002 brdom3 10021 iundom2g 10033 iundom 10035 gchi 10117 engch 10121 gchdomtri 10122 fpwwe2lem5 10128 fpwwe2lem6 10129 fpwwe2lem8 10131 gchdjuidm 10161 gchpwdom 10163 prcdnq 10486 reexALT 12459 hasheni 13793 hashdomi 13826 climcl 14939 climi 14950 climrlim2 14987 climrecl 15023 climge0 15024 iseralt 15127 climfsum 15261 structex 16590 issubc 17203 pmtrfv 18691 dprdval 19237 frgpcyg 20385 lindff 20624 lindfind 20625 f1lindf 20631 lindfmm 20636 lsslindf 20639 lbslcic 20650 psrbaglesupp 20730 hauspwdom 22245 refbas 22254 refssex 22255 reftr 22258 refun0 22259 ovoliunnul 24252 dvle 24751 cyclnspth 27733 hlimi 29115 gsumhashmul 30885 extdgval 31293 usgrgt2cycl 32655 brsset 33821 brbigcup 33830 elfix2 33836 brcolinear2 33990 isfne 34158 refssfne 34177 bj-epelg 34850 bj-ideqb 34940 bj-opelidb1ALT 34947 ovoliunnfl 35431 voliunnfl 35433 volsupnfl 35434 brabg2 35486 heiborlem4 35584 isrngo 35667 isdivrngo 35720 brssr 36231 issetssr 36233 fphpd 40194 ctbnfien 40196 climd 42739 climuzlem 42810 rlimdmafv 44186 rlimdmafv2 44267 |
Copyright terms: Public domain | W3C validator |