| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex1 5684 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 |
| This theorem is referenced by: nprrel 5690 opeliunxp2 5792 ideqg 5805 issetid 5808 dffv2 6938 brfvopabrbr 6947 brrpssg 7681 opeliunxp2f 8166 brtpos2 8188 brdomg 8907 ctex 8912 isfi 8924 domssr 8947 domdifsn 9001 xpdom2 9013 xpdom1g 9015 sbth 9038 sdomirr 9055 sdomdif 9066 fodomr 9069 pwdom 9070 xpen 9081 pwen 9091 sbthfi 9140 sucdom2 9144 fineqv 9186 f1finf1oOLD 9193 infsdomnn 9225 infsdomnnOLD 9226 relprcnfsupp 9291 fsuppssov1 9311 fsuppunbi 9316 mapfien2 9336 harword 9492 brwdom 9496 domwdom 9503 brwdom3i 9512 unwdomg 9513 xpwdomg 9514 infdifsn 9586 ac10ct 9963 inffien 9992 djuen 10099 djudom2 10113 djufi 10116 cdainflem 10117 djulepw 10122 infdjuabs 10134 infunabs 10135 infmap2 10146 cfslb2n 10197 fin4i 10227 isfin5 10228 isfin6 10229 fin4en1 10238 isfin4p1 10244 isfin32i 10294 fin45 10321 fin56 10322 fin67 10324 hsmexlem1 10355 hsmexlem3 10357 axcc3 10367 ttukeylem1 10438 brdom3 10457 iundom2g 10469 iundom 10471 gchi 10553 engch 10557 gchdomtri 10558 fpwwe2lem5 10564 fpwwe2lem6 10565 fpwwe2lem8 10567 gchdjuidm 10597 gchpwdom 10599 prcdnq 10922 reexALT 12919 hasheni 14289 hashdomi 14321 climcl 15441 climi 15452 climrlim2 15489 climrecl 15525 climge0 15526 iseralt 15627 climfsum 15762 structex 17096 issubc 17777 pmtrfv 19366 dprdval 19919 frgpcyg 21515 lindff 21757 lindfind 21758 f1lindf 21764 lindfmm 21769 lsslindf 21772 lbslcic 21783 psrbaglesupp 21864 hauspwdom 23421 refbas 23430 refssex 23431 reftr 23434 refun0 23435 ovoliunnul 25441 dvle 25945 cyclnspth 29781 hlimi 31167 gsumhashmul 33044 extdgval 33642 usgrgt2cycl 35110 brsset 35870 brbigcup 35879 elfix2 35885 brcolinear2 36039 isfne 36320 refssfne 36339 bj-epelg 37049 bj-ideqb 37140 bj-opelidb1ALT 37147 ovoliunnfl 37649 voliunnfl 37651 volsupnfl 37652 brabg2 37704 heiborlem4 37801 isrngo 37884 isdivrngo 37937 brssr 38485 issetssr 38487 fphpd 42797 ctbnfien 42799 sdomne0 43395 climd 45663 climuzlem 45734 rlimdmafv 47171 rlimdmafv2 47252 imasubc 49133 imassc 49135 imaid 49136 imaf1co 49137 imasubc3 49138 fuco112 49311 fuco111 49312 fuco21 49318 fucoid 49330 |
| Copyright terms: Public domain | W3C validator |