| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex1 5667 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 |
| This theorem is referenced by: nprrel 5673 opeliunxp2 5777 ideqg 5790 issetid 5793 dffv2 6917 brfvopabrbr 6926 brrpssg 7658 opeliunxp2f 8140 brtpos2 8162 brdomg 8881 ctex 8886 isfi 8898 domssr 8921 domdifsn 8973 xpdom2 8985 xpdom1g 8987 sbth 9010 sdomirr 9027 sdomdif 9038 fodomr 9041 pwdom 9042 xpen 9053 pwen 9063 sbthfi 9108 sucdom2 9112 fineqv 9151 infsdomnn 9185 relprcnfsupp 9248 fsuppssov1 9268 fsuppunbi 9273 mapfien2 9293 harword 9449 brwdom 9453 domwdom 9460 brwdom3i 9469 unwdomg 9470 xpwdomg 9471 infdifsn 9547 ac10ct 9925 inffien 9954 djuen 10061 djudom2 10075 djufi 10078 cdainflem 10079 djulepw 10084 infdjuabs 10096 infunabs 10097 infmap2 10108 cfslb2n 10159 fin4i 10189 isfin5 10190 isfin6 10191 fin4en1 10200 isfin4p1 10206 isfin32i 10256 fin45 10283 fin56 10284 fin67 10286 hsmexlem1 10317 hsmexlem3 10319 axcc3 10329 ttukeylem1 10400 brdom3 10419 iundom2g 10431 iundom 10433 gchi 10515 engch 10519 gchdomtri 10520 fpwwe2lem5 10526 fpwwe2lem6 10527 fpwwe2lem8 10529 gchdjuidm 10559 gchpwdom 10561 prcdnq 10884 reexALT 12882 hasheni 14255 hashdomi 14287 climcl 15406 climi 15417 climrlim2 15454 climrecl 15490 climge0 15491 iseralt 15592 climfsum 15727 structex 17061 issubc 17742 pmtrfv 19364 dprdval 19917 frgpcyg 21510 lindff 21752 lindfind 21753 f1lindf 21759 lindfmm 21764 lsslindf 21767 lbslcic 21778 psrbaglesupp 21859 hauspwdom 23416 refbas 23425 refssex 23426 reftr 23429 refun0 23430 ovoliunnul 25435 dvle 25939 cyclnspth 29779 hlimi 31168 gsumhashmul 33041 extdgval 33666 finextfldext 33677 usgrgt2cycl 35174 brsset 35931 brbigcup 35940 elfix2 35946 brcolinear2 36102 isfne 36383 refssfne 36402 bj-epelg 37112 bj-ideqb 37203 bj-opelidb1ALT 37210 ovoliunnfl 37712 voliunnfl 37714 volsupnfl 37715 brabg2 37767 heiborlem4 37864 isrngo 37947 isdivrngo 38000 brssr 38603 issetssr 38605 fphpd 42919 ctbnfien 42921 sdomne0 43516 climd 45780 climuzlem 45851 rlimdmafv 47287 rlimdmafv2 47368 imasubc 49262 imassc 49264 imaid 49265 imaf1co 49266 imasubc3 49267 fuco112 49440 fuco111 49441 fuco21 49447 fucoid 49459 |
| Copyright terms: Public domain | W3C validator |