![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex1 5358 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 682 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 Vcvv 3383 class class class wbr 4841 Rel wrel 5315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 |
This theorem is referenced by: nprrel 5364 vtoclr 5367 opeliunxp2 5462 ideqg 5475 issetid 5478 dffv2 6494 brfvopabrbr 6502 brrpssg 7171 opeliunxp2f 7572 brtpos2 7594 brdomg 8203 isfi 8217 en1uniel 8265 domdifsn 8283 undom 8288 xpdom2 8295 xpdom1g 8297 sbth 8320 dom0 8328 sdom0 8332 sdomirr 8337 sdomdif 8348 fodomr 8351 pwdom 8352 xpen 8363 pwen 8373 php3 8386 sucdom2 8396 sdom1 8400 fineqv 8415 f1finf1o 8427 infsdomnn 8461 relprcnfsupp 8518 fsuppimp 8521 fsuppunbi 8536 mapfien2 8554 harword 8710 brwdom 8712 domwdom 8719 brwdom3i 8728 unwdomg 8729 xpwdomg 8730 infdifsn 8802 ac10ct 9141 inffien 9170 iunfictbso 9221 cdaen 9281 cdadom1 9294 cdafi 9298 cdainflem 9299 cdalepw 9304 unctb 9313 infcdaabs 9314 infunabs 9315 infmap2 9326 cfslb2n 9376 fin4i 9406 isfin5 9407 isfin6 9408 fin4en1 9417 isfin4-3 9423 isfin32i 9473 fin45 9500 fin56 9501 fin67 9503 hsmexlem1 9534 hsmexlem3 9536 axcc3 9546 ttukeylem1 9617 brdom3 9636 iundom2g 9648 iundom 9650 iunctb 9682 gchi 9732 engch 9736 gchdomtri 9737 fpwwe2lem6 9743 fpwwe2lem7 9744 fpwwe2lem9 9746 gchpwdom 9778 prcdnq 10101 reexALT 12064 hasheni 13384 hashdomi 13415 brfi1indALT 13527 climcl 14567 climi 14578 climrlim2 14615 climrecl 14651 climge0 14652 iseralt 14752 climfsum 14886 structex 16191 issubc 16805 pmtrfv 18180 dprdval 18714 frgpcyg 20239 lindff 20475 lindfind 20476 f1lindf 20482 lindfmm 20487 lsslindf 20490 lbslcic 20501 1stcrestlem 21580 2ndcdisj2 21585 dis2ndc 21588 hauspwdom 21629 refbas 21638 refssex 21639 reftr 21642 refun0 21643 ovoliunnul 23611 uniiccdif 23682 dvle 24107 subgrv 26495 cyclnspth 27045 hlimi 28561 brsset 32500 brbigcup 32509 elfix2 32515 brcolinear2 32669 isfne 32837 refssfne 32856 ovoliunnfl 33931 voliunnfl 33933 volsupnfl 33934 brabg2 33989 heiborlem4 34091 isrngo 34174 isdivrngo 34227 brssr 34736 fphpd 38153 ctbnfien 38155 climd 40635 climuzlem 40706 rlimdmafv 42018 rlimdmafv2 42099 linindsv 43020 |
Copyright terms: Public domain | W3C validator |