| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version | ||
| Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
| Ref | Expression |
|---|---|
| brrelexi.1 | ⊢ Rel 𝑅 |
| Ref | Expression |
|---|---|
| brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
| 2 | brrelex1 5694 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
| 3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 |
| This theorem is referenced by: nprrel 5700 opeliunxp2 5805 ideqg 5818 issetid 5821 dffv2 6959 brfvopabrbr 6968 brrpssg 7704 opeliunxp2f 8192 brtpos2 8214 brdomg 8933 ctex 8938 isfi 8950 domssr 8973 domdifsn 9028 undomOLD 9034 xpdom2 9041 xpdom1g 9043 sucdom2OLD 9056 sbth 9067 sdomirr 9084 sdomdif 9095 fodomr 9098 pwdom 9099 xpen 9110 pwen 9120 sbthfi 9169 sucdom2 9173 sdom1OLD 9197 fineqv 9217 f1finf1oOLD 9224 infsdomnn 9256 infsdomnnOLD 9257 relprcnfsupp 9322 fsuppssov1 9342 fsuppunbi 9347 mapfien2 9367 harword 9523 brwdom 9527 domwdom 9534 brwdom3i 9543 unwdomg 9544 xpwdomg 9545 infdifsn 9617 ac10ct 9994 inffien 10023 djuen 10130 djudom2 10144 djufi 10147 cdainflem 10148 djulepw 10153 infdjuabs 10165 infunabs 10166 infmap2 10177 cfslb2n 10228 fin4i 10258 isfin5 10259 isfin6 10260 fin4en1 10269 isfin4p1 10275 isfin32i 10325 fin45 10352 fin56 10353 fin67 10355 hsmexlem1 10386 hsmexlem3 10388 axcc3 10398 ttukeylem1 10469 brdom3 10488 iundom2g 10500 iundom 10502 gchi 10584 engch 10588 gchdomtri 10589 fpwwe2lem5 10595 fpwwe2lem6 10596 fpwwe2lem8 10598 gchdjuidm 10628 gchpwdom 10630 prcdnq 10953 reexALT 12950 hasheni 14320 hashdomi 14352 climcl 15472 climi 15483 climrlim2 15520 climrecl 15556 climge0 15557 iseralt 15658 climfsum 15793 structex 17127 issubc 17804 pmtrfv 19389 dprdval 19942 frgpcyg 21490 lindff 21731 lindfind 21732 f1lindf 21738 lindfmm 21743 lsslindf 21746 lbslcic 21757 psrbaglesupp 21838 hauspwdom 23395 refbas 23404 refssex 23405 reftr 23408 refun0 23409 ovoliunnul 25415 dvle 25919 cyclnspth 29738 hlimi 31124 gsumhashmul 33008 extdgval 33656 usgrgt2cycl 35124 brsset 35884 brbigcup 35893 elfix2 35899 brcolinear2 36053 isfne 36334 refssfne 36353 bj-epelg 37063 bj-ideqb 37154 bj-opelidb1ALT 37161 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 brabg2 37718 heiborlem4 37815 isrngo 37898 isdivrngo 37951 brssr 38499 issetssr 38501 fphpd 42811 ctbnfien 42813 sdomne0 43409 climd 45677 climuzlem 45748 rlimdmafv 47182 rlimdmafv2 47263 imasubc 49144 imassc 49146 imaid 49147 imaf1co 49148 imasubc3 49149 fuco112 49322 fuco111 49323 fuco21 49329 fucoid 49341 |
| Copyright terms: Public domain | W3C validator |