![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex1 5741 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 690 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-xp 5694 df-rel 5695 |
This theorem is referenced by: nprrel 5747 opeliunxp2 5851 ideqg 5864 issetid 5867 dffv2 7003 brfvopabrbr 7012 brrpssg 7743 opeliunxp2f 8233 brtpos2 8255 brdomg 8995 brdomgOLD 8996 ctex 9002 isfi 9014 domssr 9037 domdifsn 9092 undomOLD 9098 xpdom2 9105 xpdom1g 9107 sucdom2OLD 9120 sbth 9131 dom0OLD 9141 sdom0OLD 9147 sdomirr 9152 sdomdif 9163 fodomr 9166 pwdom 9167 xpen 9178 pwen 9188 sbthfi 9236 sucdom2 9240 php3OLD 9258 sdom1OLD 9276 fineqv 9296 f1finf1oOLD 9303 infsdomnn 9335 infsdomnnOLD 9336 relprcnfsupp 9401 fsuppssov1 9421 fsuppunbi 9426 mapfien2 9446 harword 9600 brwdom 9604 domwdom 9611 brwdom3i 9620 unwdomg 9621 xpwdomg 9622 infdifsn 9694 ac10ct 10071 inffien 10100 djuen 10207 djudom2 10221 djufi 10224 cdainflem 10225 djulepw 10230 infdjuabs 10242 infunabs 10243 infmap2 10254 cfslb2n 10305 fin4i 10335 isfin5 10336 isfin6 10337 fin4en1 10346 isfin4p1 10352 isfin32i 10402 fin45 10429 fin56 10430 fin67 10432 hsmexlem1 10463 hsmexlem3 10465 axcc3 10475 ttukeylem1 10546 brdom3 10565 iundom2g 10577 iundom 10579 gchi 10661 engch 10665 gchdomtri 10666 fpwwe2lem5 10672 fpwwe2lem6 10673 fpwwe2lem8 10675 gchdjuidm 10705 gchpwdom 10707 prcdnq 11030 reexALT 13023 hasheni 14383 hashdomi 14415 climcl 15531 climi 15542 climrlim2 15579 climrecl 15615 climge0 15616 iseralt 15717 climfsum 15852 structex 17183 issubc 17885 pmtrfv 19484 dprdval 20037 frgpcyg 21609 lindff 21852 lindfind 21853 f1lindf 21859 lindfmm 21864 lsslindf 21867 lbslcic 21878 psrbaglesupp 21959 hauspwdom 23524 refbas 23533 refssex 23534 reftr 23537 refun0 23538 ovoliunnul 25555 dvle 26060 cyclnspth 29832 hlimi 31216 gsumhashmul 33046 extdgval 33681 usgrgt2cycl 35114 brsset 35870 brbigcup 35879 elfix2 35885 brcolinear2 36039 isfne 36321 refssfne 36340 bj-epelg 37050 bj-ideqb 37141 bj-opelidb1ALT 37148 ovoliunnfl 37648 voliunnfl 37650 volsupnfl 37651 brabg2 37703 heiborlem4 37800 isrngo 37883 isdivrngo 37936 brssr 38482 issetssr 38484 fphpd 42803 ctbnfien 42805 sdomne0 43402 climd 45627 climuzlem 45698 rlimdmafv 47126 rlimdmafv2 47207 |
Copyright terms: Public domain | W3C validator |