Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brrelex1i | Structured version Visualization version GIF version |
Description: The first argument of a binary relation exists. (An artifact of our ordered pair definition.) (Contributed by NM, 4-Jun-1998.) |
Ref | Expression |
---|---|
brrelexi.1 | ⊢ Rel 𝑅 |
Ref | Expression |
---|---|
brrelex1i | ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brrelexi.1 | . 2 ⊢ Rel 𝑅 | |
2 | brrelex1 5651 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴𝑅𝐵) → 𝐴 ∈ V) | |
3 | 1, 2 | mpan 688 | 1 ⊢ (𝐴𝑅𝐵 → 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 Vcvv 3437 class class class wbr 5081 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 |
This theorem is referenced by: nprrel 5657 opeliunxp2 5760 ideqg 5773 issetid 5776 dffv2 6895 brfvopabrbr 6904 brrpssg 7610 opeliunxp2f 8057 brtpos2 8079 brdomg 8777 brdomgOLD 8778 ctex 8784 isfi 8797 domssr 8820 en1unielOLD 8854 domdifsn 8879 undomOLD 8885 xpdom2 8892 xpdom1g 8894 sucdom2OLD 8907 sbth 8918 dom0OLD 8928 sdom0OLD 8934 sdomirr 8939 sdomdif 8950 fodomr 8953 pwdom 8954 xpen 8965 pwen 8975 sbthfi 9023 sucdom2 9027 php3OLD 9045 sdom1OLD 9064 fineqv 9082 f1finf1o 9090 infsdomnn 9119 relprcnfsupp 9175 fsuppunbi 9193 mapfien2 9212 harword 9366 brwdom 9370 domwdom 9377 brwdom3i 9386 unwdomg 9387 xpwdomg 9388 infdifsn 9459 ac10ct 9836 inffien 9865 djuen 9971 djudom2 9985 djufi 9988 cdainflem 9989 djulepw 9994 infdjuabs 10008 infunabs 10009 infmap2 10020 cfslb2n 10070 fin4i 10100 isfin5 10101 isfin6 10102 fin4en1 10111 isfin4p1 10117 isfin32i 10167 fin45 10194 fin56 10195 fin67 10197 hsmexlem1 10228 hsmexlem3 10230 axcc3 10240 ttukeylem1 10311 brdom3 10330 iundom2g 10342 iundom 10344 gchi 10426 engch 10430 gchdomtri 10431 fpwwe2lem5 10437 fpwwe2lem6 10438 fpwwe2lem8 10440 gchdjuidm 10470 gchpwdom 10472 prcdnq 10795 reexALT 12770 hasheni 14108 hashdomi 14140 climcl 15253 climi 15264 climrlim2 15301 climrecl 15337 climge0 15338 iseralt 15441 climfsum 15577 structex 16896 issubc 17595 pmtrfv 19105 dprdval 19651 frgpcyg 20826 lindff 21067 lindfind 21068 f1lindf 21074 lindfmm 21079 lsslindf 21082 lbslcic 21093 psrbaglesupp 21172 hauspwdom 22697 refbas 22706 refssex 22707 reftr 22710 refun0 22711 ovoliunnul 24716 dvle 25216 cyclnspth 28213 hlimi 29595 gsumhashmul 31361 extdgval 31774 usgrgt2cycl 33137 brsset 34236 brbigcup 34245 elfix2 34251 brcolinear2 34405 isfne 34573 refssfne 34592 bj-epelg 35283 bj-ideqb 35374 bj-opelidb1ALT 35381 ovoliunnfl 35863 voliunnfl 35865 volsupnfl 35866 brabg2 35918 heiborlem4 36016 isrngo 36099 isdivrngo 36152 brssr 36661 issetssr 36663 fphpd 40675 ctbnfien 40677 climd 43262 climuzlem 43333 rlimdmafv 44727 rlimdmafv2 44808 |
Copyright terms: Public domain | W3C validator |