MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslindf Structured version   Visualization version   GIF version

Theorem lsslindf 20691
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslindf ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))

Proof of Theorem lsslindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 20669 . . . 4 Rel LIndF
21brrelex1i 5454 . . 3 (𝐹 LIndF 𝑋𝐹 ∈ V)
32a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 ∈ V))
41brrelex1i 5454 . . 3 (𝐹 LIndF 𝑊𝐹 ∈ V)
54a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑊𝐹 ∈ V))
6 simpr 477 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
7 lsslindf.x . . . . . . . . 9 𝑋 = (𝑊s 𝑆)
8 eqid 2771 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
97, 8ressbasss 16410 . . . . . . . 8 (Base‘𝑋) ⊆ (Base‘𝑊)
10 fss 6354 . . . . . . . 8 ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
116, 9, 10sylancl 578 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
12 ffn 6341 . . . . . . . . 9 (𝐹:dom 𝐹⟶(Base‘𝑊) → 𝐹 Fn dom 𝐹)
1312adantl 474 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹 Fn dom 𝐹)
14 simp3 1119 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹𝑆)
15 lsslindf.u . . . . . . . . . . . . 13 𝑈 = (LSubSp‘𝑊)
168, 15lssss 19442 . . . . . . . . . . . 12 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
17163ad2ant2 1115 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
187, 8ressbas2 16409 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
1917, 18syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 = (Base‘𝑋))
2014, 19sseqtrd 3890 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (Base‘𝑋))
2120adantr 473 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → ran 𝐹 ⊆ (Base‘𝑋))
22 df-f 6189 . . . . . . . 8 (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ (Base‘𝑋)))
2313, 21, 22sylanbrc 575 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
2411, 23impbida 789 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
2524adantr 473 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
26 simpl2 1173 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑆𝑈)
27 eqid 2771 . . . . . . . . . . . 12 (Scalar‘𝑊) = (Scalar‘𝑊)
287, 27resssca 16504 . . . . . . . . . . 11 (𝑆𝑈 → (Scalar‘𝑊) = (Scalar‘𝑋))
2928eqcomd 2777 . . . . . . . . . 10 (𝑆𝑈 → (Scalar‘𝑋) = (Scalar‘𝑊))
3026, 29syl 17 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Scalar‘𝑋) = (Scalar‘𝑊))
3130fveq2d 6500 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3230fveq2d 6500 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
3332sneqd 4447 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → {(0g‘(Scalar‘𝑋))} = {(0g‘(Scalar‘𝑊))})
3431, 33difeq12d 3983 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
35 eqid 2771 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
367, 35ressvsca 16505 . . . . . . . . . . . 12 (𝑆𝑈 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
3736eqcomd 2777 . . . . . . . . . . 11 (𝑆𝑈 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3826, 37syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3938oveqd 6991 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝑘( ·𝑠𝑋)(𝐹𝑥)) = (𝑘( ·𝑠𝑊)(𝐹𝑥)))
40 simpl1 1172 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑊 ∈ LMod)
41 imassrn 5778 . . . . . . . . . . . 12 (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ ran 𝐹
42 simpl3 1174 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ran 𝐹𝑆)
4341, 42syl5ss 3862 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆)
44 eqid 2771 . . . . . . . . . . . 12 (LSpan‘𝑊) = (LSpan‘𝑊)
45 eqid 2771 . . . . . . . . . . . 12 (LSpan‘𝑋) = (LSpan‘𝑋)
467, 44, 45, 15lsslsp 19521 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4740, 26, 43, 46syl3anc 1352 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4847eqcomd 2777 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4939, 48eleq12d 2853 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5049notbid 310 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5134, 50raleqbidv 3334 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5251ralbidv 3140 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5325, 52anbi12d 622 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
547ovexi 7007 . . . . . 6 𝑋 ∈ V
5554a1i 11 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑋 ∈ V)
56 eqid 2771 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
57 eqid 2771 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
58 eqid 2771 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
59 eqid 2771 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
60 eqid 2771 . . . . . 6 (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋))
6156, 57, 45, 58, 59, 60islindf 20673 . . . . 5 ((𝑋 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6255, 61sylan 572 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
63 eqid 2771 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
64 eqid 2771 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
658, 35, 44, 27, 63, 64islindf 20673 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
66653ad2antl1 1166 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6753, 62, 663bitr4d 303 . . 3 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
6867ex 405 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 ∈ V → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊)))
693, 5, 68pm5.21ndd 372 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3081  Vcvv 3408  cdif 3819  wss 3822  {csn 4435   class class class wbr 4925  dom cdm 5403  ran crn 5404  cima 5406   Fn wfn 6180  wf 6181  cfv 6185  (class class class)co 6974  Basecbs 16337  s cress 16338  Scalarcsca 16422   ·𝑠 cvsca 16423  0gc0g 16567  LModclmod 19368  LSubSpclss 19437  LSpanclspn 19477   LIndF clindf 20665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-sca 16435  df-vsca 16436  df-0g 16569  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-mgp 18975  df-ur 18987  df-ring 19034  df-lmod 19370  df-lss 19438  df-lsp 19478  df-lindf 20667
This theorem is referenced by:  lsslinds  20692
  Copyright terms: Public domain W3C validator