MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslindf Structured version   Visualization version   GIF version

Theorem lsslindf 20947
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslindf ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))

Proof of Theorem lsslindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 20925 . . . 4 Rel LIndF
21brrelex1i 5634 . . 3 (𝐹 LIndF 𝑋𝐹 ∈ V)
32a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 ∈ V))
41brrelex1i 5634 . . 3 (𝐹 LIndF 𝑊𝐹 ∈ V)
54a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑊𝐹 ∈ V))
6 simpr 484 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
7 lsslindf.x . . . . . . . . 9 𝑋 = (𝑊s 𝑆)
8 eqid 2738 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
97, 8ressbasss 16876 . . . . . . . 8 (Base‘𝑋) ⊆ (Base‘𝑊)
10 fss 6601 . . . . . . . 8 ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
116, 9, 10sylancl 585 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
12 ffn 6584 . . . . . . . . 9 (𝐹:dom 𝐹⟶(Base‘𝑊) → 𝐹 Fn dom 𝐹)
1312adantl 481 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹 Fn dom 𝐹)
14 simp3 1136 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹𝑆)
15 lsslindf.u . . . . . . . . . . . . 13 𝑈 = (LSubSp‘𝑊)
168, 15lssss 20113 . . . . . . . . . . . 12 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
17163ad2ant2 1132 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
187, 8ressbas2 16875 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
1917, 18syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 = (Base‘𝑋))
2014, 19sseqtrd 3957 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (Base‘𝑋))
2120adantr 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → ran 𝐹 ⊆ (Base‘𝑋))
22 df-f 6422 . . . . . . . 8 (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ (Base‘𝑋)))
2313, 21, 22sylanbrc 582 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
2411, 23impbida 797 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
2524adantr 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
26 simpl2 1190 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑆𝑈)
27 eqid 2738 . . . . . . . . . . . 12 (Scalar‘𝑊) = (Scalar‘𝑊)
287, 27resssca 16978 . . . . . . . . . . 11 (𝑆𝑈 → (Scalar‘𝑊) = (Scalar‘𝑋))
2928eqcomd 2744 . . . . . . . . . 10 (𝑆𝑈 → (Scalar‘𝑋) = (Scalar‘𝑊))
3026, 29syl 17 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Scalar‘𝑋) = (Scalar‘𝑊))
3130fveq2d 6760 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3230fveq2d 6760 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
3332sneqd 4570 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → {(0g‘(Scalar‘𝑋))} = {(0g‘(Scalar‘𝑊))})
3431, 33difeq12d 4054 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
35 eqid 2738 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
367, 35ressvsca 16979 . . . . . . . . . . . 12 (𝑆𝑈 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
3736eqcomd 2744 . . . . . . . . . . 11 (𝑆𝑈 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3826, 37syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3938oveqd 7272 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝑘( ·𝑠𝑋)(𝐹𝑥)) = (𝑘( ·𝑠𝑊)(𝐹𝑥)))
40 simpl1 1189 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑊 ∈ LMod)
41 imassrn 5969 . . . . . . . . . . . 12 (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ ran 𝐹
42 simpl3 1191 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ran 𝐹𝑆)
4341, 42sstrid 3928 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆)
44 eqid 2738 . . . . . . . . . . . 12 (LSpan‘𝑊) = (LSpan‘𝑊)
45 eqid 2738 . . . . . . . . . . . 12 (LSpan‘𝑋) = (LSpan‘𝑋)
467, 44, 45, 15lsslsp 20192 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4740, 26, 43, 46syl3anc 1369 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4847eqcomd 2744 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4939, 48eleq12d 2833 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5049notbid 317 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5134, 50raleqbidv 3327 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5251ralbidv 3120 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5325, 52anbi12d 630 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
547ovexi 7289 . . . . . 6 𝑋 ∈ V
5554a1i 11 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑋 ∈ V)
56 eqid 2738 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
57 eqid 2738 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
58 eqid 2738 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
59 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
60 eqid 2738 . . . . . 6 (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋))
6156, 57, 45, 58, 59, 60islindf 20929 . . . . 5 ((𝑋 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6255, 61sylan 579 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
63 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
64 eqid 2738 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
658, 35, 44, 27, 63, 64islindf 20929 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
66653ad2antl1 1183 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6753, 62, 663bitr4d 310 . . 3 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
6867ex 412 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 ∈ V → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊)))
693, 5, 68pm5.21ndd 380 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  dom cdm 5580  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148   LIndF clindf 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lindf 20923
This theorem is referenced by:  lsslinds  20948
  Copyright terms: Public domain W3C validator