Step | Hyp | Ref
| Expression |
1 | | rellindf 20925 |
. . . 4
⊢ Rel
LIndF |
2 | 1 | brrelex1i 5634 |
. . 3
⊢ (𝐹 LIndF 𝑋 → 𝐹 ∈ V) |
3 | 2 | a1i 11 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 → 𝐹 ∈ V)) |
4 | 1 | brrelex1i 5634 |
. . 3
⊢ (𝐹 LIndF 𝑊 → 𝐹 ∈ V) |
5 | 4 | a1i 11 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑊 → 𝐹 ∈ V)) |
6 | | simpr 484 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑋)) |
7 | | lsslindf.x |
. . . . . . . . 9
⊢ 𝑋 = (𝑊 ↾s 𝑆) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑊) =
(Base‘𝑊) |
9 | 7, 8 | ressbasss 16876 |
. . . . . . . 8
⊢
(Base‘𝑋)
⊆ (Base‘𝑊) |
10 | | fss 6601 |
. . . . . . . 8
⊢ ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
11 | 6, 9, 10 | sylancl 585 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
12 | | ffn 6584 |
. . . . . . . . 9
⊢ (𝐹:dom 𝐹⟶(Base‘𝑊) → 𝐹 Fn dom 𝐹) |
13 | 12 | adantl 481 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹 Fn dom 𝐹) |
14 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → ran 𝐹 ⊆ 𝑆) |
15 | | lsslindf.u |
. . . . . . . . . . . . 13
⊢ 𝑈 = (LSubSp‘𝑊) |
16 | 8, 15 | lssss 20113 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ 𝑈 → 𝑆 ⊆ (Base‘𝑊)) |
17 | 16 | 3ad2ant2 1132 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝑊)) |
18 | 7, 8 | ressbas2 16875 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋)) |
19 | 17, 18 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → 𝑆 = (Base‘𝑋)) |
20 | 14, 19 | sseqtrd 3957 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → ran 𝐹 ⊆ (Base‘𝑋)) |
21 | 20 | adantr 480 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → ran 𝐹 ⊆ (Base‘𝑋)) |
22 | | df-f 6422 |
. . . . . . . 8
⊢ (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ (Base‘𝑋))) |
23 | 13, 21, 22 | sylanbrc 582 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑋)) |
24 | 11, 23 | impbida 797 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊))) |
25 | 24 | adantr 480 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊))) |
26 | | simpl2 1190 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → 𝑆 ∈ 𝑈) |
27 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
28 | 7, 27 | resssca 16978 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑈 → (Scalar‘𝑊) = (Scalar‘𝑋)) |
29 | 28 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑈 → (Scalar‘𝑋) = (Scalar‘𝑊)) |
30 | 26, 29 | syl 17 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (Scalar‘𝑋) = (Scalar‘𝑊)) |
31 | 30 | fveq2d 6760 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) →
(Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊))) |
32 | 30 | fveq2d 6760 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) →
(0g‘(Scalar‘𝑋)) =
(0g‘(Scalar‘𝑊))) |
33 | 32 | sneqd 4570 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) →
{(0g‘(Scalar‘𝑋))} =
{(0g‘(Scalar‘𝑊))}) |
34 | 31, 33 | difeq12d 4054 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) →
((Base‘(Scalar‘𝑋)) ∖
{(0g‘(Scalar‘𝑋))}) = ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))})) |
35 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
36 | 7, 35 | ressvsca 16979 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ 𝑈 → (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑋)) |
37 | 36 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑆 ∈ 𝑈 → (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑊)) |
38 | 26, 37 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑊)) |
39 | 38 | oveqd 7272 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) = (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥))) |
40 | | simpl1 1189 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → 𝑊 ∈ LMod) |
41 | | imassrn 5969 |
. . . . . . . . . . . 12
⊢ (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ ran 𝐹 |
42 | | simpl3 1191 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → ran 𝐹 ⊆ 𝑆) |
43 | 41, 42 | sstrid 3928 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆) |
44 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
45 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(LSpan‘𝑋) =
(LSpan‘𝑋) |
46 | 7, 44, 45, 15 | lsslsp 20192 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) |
47 | 40, 26, 43, 46 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) |
48 | 47 | eqcomd 2744 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) |
49 | 39, 48 | eleq12d 2833 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → ((𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
50 | 49 | notbid 317 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (¬ (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
51 | 34, 50 | raleqbidv 3327 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (∀𝑘 ∈
((Base‘(Scalar‘𝑋)) ∖
{(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
52 | 51 | ralbidv 3120 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖
{(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
53 | 25, 52 | anbi12d 630 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖
{(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
54 | 7 | ovexi 7289 |
. . . . . 6
⊢ 𝑋 ∈ V |
55 | 54 | a1i 11 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → 𝑋 ∈ V) |
56 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
57 | | eqid 2738 |
. . . . . 6
⊢ (
·𝑠 ‘𝑋) = ( ·𝑠
‘𝑋) |
58 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑋) =
(Scalar‘𝑋) |
59 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)) |
60 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(Scalar‘𝑋)) =
(0g‘(Scalar‘𝑋)) |
61 | 56, 57, 45, 58, 59, 60 | islindf 20929 |
. . . . 5
⊢ ((𝑋 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖
{(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
62 | 55, 61 | sylan 579 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖
{(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠
‘𝑋)(𝐹‘𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
63 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
64 | | eqid 2738 |
. . . . . 6
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
65 | 8, 35, 44, 27, 63, 64 | islindf 20929 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
66 | 65 | 3ad2antl1 1183 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
67 | 53, 62, 66 | 3bitr4d 310 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) |
68 | 67 | ex 412 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 ∈ V → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊))) |
69 | 3, 5, 68 | pm5.21ndd 380 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ 𝑈 ∧ ran 𝐹 ⊆ 𝑆) → (𝐹 LIndF 𝑋 ↔ 𝐹 LIndF 𝑊)) |