Step | Hyp | Ref
| Expression |
1 | | rellindf 21354 |
. . . 4
β’ Rel
LIndF |
2 | 1 | brrelex1i 5730 |
. . 3
β’ (πΉ LIndF π β πΉ β V) |
3 | 2 | a1i 11 |
. 2
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β (πΉ LIndF π β πΉ β V)) |
4 | 1 | brrelex1i 5730 |
. . 3
β’ (πΉ LIndF π β πΉ β V) |
5 | 4 | a1i 11 |
. 2
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β (πΉ LIndF π β πΉ β V)) |
6 | | simpr 485 |
. . . . . . . 8
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ:dom πΉβΆ(Baseβπ)) β πΉ:dom πΉβΆ(Baseβπ)) |
7 | | lsslindf.x |
. . . . . . . . 9
β’ π = (π βΎs π) |
8 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
9 | 7, 8 | ressbasss 17179 |
. . . . . . . 8
β’
(Baseβπ)
β (Baseβπ) |
10 | | fss 6731 |
. . . . . . . 8
β’ ((πΉ:dom πΉβΆ(Baseβπ) β§ (Baseβπ) β (Baseβπ)) β πΉ:dom πΉβΆ(Baseβπ)) |
11 | 6, 9, 10 | sylancl 586 |
. . . . . . 7
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ:dom πΉβΆ(Baseβπ)) β πΉ:dom πΉβΆ(Baseβπ)) |
12 | | ffn 6714 |
. . . . . . . . 9
β’ (πΉ:dom πΉβΆ(Baseβπ) β πΉ Fn dom πΉ) |
13 | 12 | adantl 482 |
. . . . . . . 8
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ:dom πΉβΆ(Baseβπ)) β πΉ Fn dom πΉ) |
14 | | simp3 1138 |
. . . . . . . . . 10
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β ran πΉ β π) |
15 | | lsslindf.u |
. . . . . . . . . . . . 13
β’ π = (LSubSpβπ) |
16 | 8, 15 | lssss 20539 |
. . . . . . . . . . . 12
β’ (π β π β π β (Baseβπ)) |
17 | 16 | 3ad2ant2 1134 |
. . . . . . . . . . 11
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β π β (Baseβπ)) |
18 | 7, 8 | ressbas2 17178 |
. . . . . . . . . . 11
β’ (π β (Baseβπ) β π = (Baseβπ)) |
19 | 17, 18 | syl 17 |
. . . . . . . . . 10
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β π = (Baseβπ)) |
20 | 14, 19 | sseqtrd 4021 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β ran πΉ β (Baseβπ)) |
21 | 20 | adantr 481 |
. . . . . . . 8
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ:dom πΉβΆ(Baseβπ)) β ran πΉ β (Baseβπ)) |
22 | | df-f 6544 |
. . . . . . . 8
β’ (πΉ:dom πΉβΆ(Baseβπ) β (πΉ Fn dom πΉ β§ ran πΉ β (Baseβπ))) |
23 | 13, 21, 22 | sylanbrc 583 |
. . . . . . 7
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ:dom πΉβΆ(Baseβπ)) β πΉ:dom πΉβΆ(Baseβπ)) |
24 | 11, 23 | impbida 799 |
. . . . . 6
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β (πΉ:dom πΉβΆ(Baseβπ) β πΉ:dom πΉβΆ(Baseβπ))) |
25 | 24 | adantr 481 |
. . . . 5
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (πΉ:dom πΉβΆ(Baseβπ) β πΉ:dom πΉβΆ(Baseβπ))) |
26 | | simpl2 1192 |
. . . . . . . . . 10
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β π β π) |
27 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(Scalarβπ) =
(Scalarβπ) |
28 | 7, 27 | resssca 17284 |
. . . . . . . . . . 11
β’ (π β π β (Scalarβπ) = (Scalarβπ)) |
29 | 28 | eqcomd 2738 |
. . . . . . . . . 10
β’ (π β π β (Scalarβπ) = (Scalarβπ)) |
30 | 26, 29 | syl 17 |
. . . . . . . . 9
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (Scalarβπ) = (Scalarβπ)) |
31 | 30 | fveq2d 6892 |
. . . . . . . 8
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ))) |
32 | 30 | fveq2d 6892 |
. . . . . . . . 9
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ))) |
33 | 32 | sneqd 4639 |
. . . . . . . 8
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β
{(0gβ(Scalarβπ))} =
{(0gβ(Scalarβπ))}) |
34 | 31, 33 | difeq12d 4122 |
. . . . . . 7
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β
((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) = ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))})) |
35 | | eqid 2732 |
. . . . . . . . . . . . 13
β’ (
Β·π βπ) = ( Β·π
βπ) |
36 | 7, 35 | ressvsca 17285 |
. . . . . . . . . . . 12
β’ (π β π β (
Β·π βπ) = ( Β·π
βπ)) |
37 | 36 | eqcomd 2738 |
. . . . . . . . . . 11
β’ (π β π β (
Β·π βπ) = ( Β·π
βπ)) |
38 | 26, 37 | syl 17 |
. . . . . . . . . 10
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (
Β·π βπ) = ( Β·π
βπ)) |
39 | 38 | oveqd 7422 |
. . . . . . . . 9
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (π( Β·π
βπ)(πΉβπ₯)) = (π( Β·π
βπ)(πΉβπ₯))) |
40 | | simpl1 1191 |
. . . . . . . . . . 11
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β π β LMod) |
41 | | imassrn 6068 |
. . . . . . . . . . . 12
β’ (πΉ β (dom πΉ β {π₯})) β ran πΉ |
42 | | simpl3 1193 |
. . . . . . . . . . . 12
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β ran πΉ β π) |
43 | 41, 42 | sstrid 3992 |
. . . . . . . . . . 11
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (πΉ β (dom πΉ β {π₯})) β π) |
44 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LSpanβπ) =
(LSpanβπ) |
45 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(LSpanβπ) =
(LSpanβπ) |
46 | 7, 44, 45, 15 | lsslsp 20618 |
. . . . . . . . . . 11
β’ ((π β LMod β§ π β π β§ (πΉ β (dom πΉ β {π₯})) β π) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) = ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))) |
47 | 40, 26, 43, 46 | syl3anc 1371 |
. . . . . . . . . 10
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) = ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))) |
48 | 47 | eqcomd 2738 |
. . . . . . . . 9
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) = ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))) |
49 | 39, 48 | eleq12d 2827 |
. . . . . . . 8
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β ((π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) β (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))))) |
50 | 49 | notbid 317 |
. . . . . . 7
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) β Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))))) |
51 | 34, 50 | raleqbidv 3342 |
. . . . . 6
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (βπ β
((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) β βπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))))) |
52 | 51 | ralbidv 3177 |
. . . . 5
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))) β βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯}))))) |
53 | 25, 52 | anbi12d 631 |
. . . 4
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β ((πΉ:dom πΉβΆ(Baseβπ) β§ βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))) β (πΉ:dom πΉβΆ(Baseβπ) β§ βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))))) |
54 | 7 | ovexi 7439 |
. . . . . 6
β’ π β V |
55 | 54 | a1i 11 |
. . . . 5
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β π β V) |
56 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ) =
(Baseβπ) |
57 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
58 | | eqid 2732 |
. . . . . 6
β’
(Scalarβπ) =
(Scalarβπ) |
59 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
60 | | eqid 2732 |
. . . . . 6
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
61 | 56, 57, 45, 58, 59, 60 | islindf 21358 |
. . . . 5
β’ ((π β V β§ πΉ β V) β (πΉ LIndF π β (πΉ:dom πΉβΆ(Baseβπ) β§ βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))))) |
62 | 55, 61 | sylan 580 |
. . . 4
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (πΉ LIndF π β (πΉ:dom πΉβΆ(Baseβπ) β§ βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))))) |
63 | | eqid 2732 |
. . . . . 6
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
64 | | eqid 2732 |
. . . . . 6
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
65 | 8, 35, 44, 27, 63, 64 | islindf 21358 |
. . . . 5
β’ ((π β LMod β§ πΉ β V) β (πΉ LIndF π β (πΉ:dom πΉβΆ(Baseβπ) β§ βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))))) |
66 | 65 | 3ad2antl1 1185 |
. . . 4
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (πΉ LIndF π β (πΉ:dom πΉβΆ(Baseβπ) β§ βπ₯ β dom πΉβπ β ((Baseβ(Scalarβπ)) β
{(0gβ(Scalarβπ))}) Β¬ (π( Β·π
βπ)(πΉβπ₯)) β ((LSpanβπ)β(πΉ β (dom πΉ β {π₯})))))) |
67 | 53, 62, 66 | 3bitr4d 310 |
. . 3
β’ (((π β LMod β§ π β π β§ ran πΉ β π) β§ πΉ β V) β (πΉ LIndF π β πΉ LIndF π)) |
68 | 67 | ex 413 |
. 2
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β (πΉ β V β (πΉ LIndF π β πΉ LIndF π))) |
69 | 3, 5, 68 | pm5.21ndd 380 |
1
β’ ((π β LMod β§ π β π β§ ran πΉ β π) β (πΉ LIndF π β πΉ LIndF π)) |