MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslindf Structured version   Visualization version   GIF version

Theorem lsslindf 21781
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslindf ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))

Proof of Theorem lsslindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rellindf 21759 . . . 4 Rel LIndF
21brrelex1i 5734 . . 3 (𝐹 LIndF 𝑋𝐹 ∈ V)
32a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 ∈ V))
41brrelex1i 5734 . . 3 (𝐹 LIndF 𝑊𝐹 ∈ V)
54a1i 11 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑊𝐹 ∈ V))
6 simpr 483 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
7 lsslindf.x . . . . . . . . 9 𝑋 = (𝑊s 𝑆)
8 eqid 2725 . . . . . . . . 9 (Base‘𝑊) = (Base‘𝑊)
97, 8ressbasss 17222 . . . . . . . 8 (Base‘𝑋) ⊆ (Base‘𝑊)
10 fss 6739 . . . . . . . 8 ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ (Base‘𝑋) ⊆ (Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
116, 9, 10sylancl 584 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑋)) → 𝐹:dom 𝐹⟶(Base‘𝑊))
12 ffn 6723 . . . . . . . . 9 (𝐹:dom 𝐹⟶(Base‘𝑊) → 𝐹 Fn dom 𝐹)
1312adantl 480 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹 Fn dom 𝐹)
14 simp3 1135 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹𝑆)
15 lsslindf.u . . . . . . . . . . . . 13 𝑈 = (LSubSp‘𝑊)
168, 15lssss 20832 . . . . . . . . . . . 12 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
17163ad2ant2 1131 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
187, 8ressbas2 17221 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
1917, 18syl 17 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑆 = (Base‘𝑋))
2014, 19sseqtrd 4017 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → ran 𝐹 ⊆ (Base‘𝑋))
2120adantr 479 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → ran 𝐹 ⊆ (Base‘𝑋))
22 df-f 6553 . . . . . . . 8 (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ (𝐹 Fn dom 𝐹 ∧ ran 𝐹 ⊆ (Base‘𝑋)))
2313, 21, 22sylanbrc 581 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹:dom 𝐹⟶(Base‘𝑊)) → 𝐹:dom 𝐹⟶(Base‘𝑋))
2411, 23impbida 799 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
2524adantr 479 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹:dom 𝐹⟶(Base‘𝑋) ↔ 𝐹:dom 𝐹⟶(Base‘𝑊)))
26 simpl2 1189 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑆𝑈)
27 eqid 2725 . . . . . . . . . . . 12 (Scalar‘𝑊) = (Scalar‘𝑊)
287, 27resssca 17327 . . . . . . . . . . 11 (𝑆𝑈 → (Scalar‘𝑊) = (Scalar‘𝑋))
2928eqcomd 2731 . . . . . . . . . 10 (𝑆𝑈 → (Scalar‘𝑋) = (Scalar‘𝑊))
3026, 29syl 17 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Scalar‘𝑋) = (Scalar‘𝑊))
3130fveq2d 6900 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑊)))
3230fveq2d 6900 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑊)))
3332sneqd 4642 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → {(0g‘(Scalar‘𝑋))} = {(0g‘(Scalar‘𝑊))})
3431, 33difeq12d 4119 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) = ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
35 eqid 2725 . . . . . . . . . . . . 13 ( ·𝑠𝑊) = ( ·𝑠𝑊)
367, 35ressvsca 17328 . . . . . . . . . . . 12 (𝑆𝑈 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
3736eqcomd 2731 . . . . . . . . . . 11 (𝑆𝑈 → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3826, 37syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
3938oveqd 7436 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝑘( ·𝑠𝑋)(𝐹𝑥)) = (𝑘( ·𝑠𝑊)(𝐹𝑥)))
40 simpl1 1188 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → 𝑊 ∈ LMod)
41 imassrn 6075 . . . . . . . . . . 11 (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ ran 𝐹
42 simpl3 1190 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ran 𝐹𝑆)
4341, 42sstrid 3988 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆)
44 eqid 2725 . . . . . . . . . . 11 (LSpan‘𝑊) = (LSpan‘𝑊)
45 eqid 2725 . . . . . . . . . . 11 (LSpan‘𝑋) = (LSpan‘𝑋)
467, 44, 45, 15lsslsp 20911 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ (𝐹 “ (dom 𝐹 ∖ {𝑥})) ⊆ 𝑆) → ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4740, 26, 43, 46syl3anc 1368 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) = ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))
4839, 47eleq12d 2819 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
4948notbid 317 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5034, 49raleqbidv 3329 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5150ralbidv 3167 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))) ↔ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
5225, 51anbi12d 630 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → ((𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))) ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
537ovexi 7453 . . . . . 6 𝑋 ∈ V
5453a1i 11 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → 𝑋 ∈ V)
55 eqid 2725 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
56 eqid 2725 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
57 eqid 2725 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
58 eqid 2725 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
59 eqid 2725 . . . . . 6 (0g‘(Scalar‘𝑋)) = (0g‘(Scalar‘𝑋))
6055, 56, 45, 57, 58, 59islindf 21763 . . . . 5 ((𝑋 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6154, 60sylan 578 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋 ↔ (𝐹:dom 𝐹⟶(Base‘𝑋) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑋)) ∖ {(0g‘(Scalar‘𝑋))}) ¬ (𝑘( ·𝑠𝑋)(𝐹𝑥)) ∈ ((LSpan‘𝑋)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
62 eqid 2725 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
63 eqid 2725 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
648, 35, 44, 27, 62, 63islindf 21763 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
65643ad2antl1 1182 . . . 4 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
6652, 61, 653bitr4d 310 . . 3 (((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
6766ex 411 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 ∈ V → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊)))
683, 5, 67pm5.21ndd 378 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran 𝐹𝑆) → (𝐹 LIndF 𝑋𝐹 LIndF 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  Vcvv 3461  cdif 3941  wss 3944  {csn 4630   class class class wbr 5149  dom cdm 5678  ran crn 5679  cima 5681   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  Basecbs 17183  s cress 17212  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424  LModclmod 20755  LSubSpclss 20827  LSpanclspn 20867   LIndF clindf 21755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-sca 17252  df-vsca 17253  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-mgp 20087  df-ur 20134  df-ring 20187  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lindf 21757
This theorem is referenced by:  lsslinds  21782
  Copyright terms: Public domain W3C validator