MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff Structured version   Visualization version   GIF version

Theorem lindff 21724
Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lindff.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
lindff ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)

Proof of Theorem lindff
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹 LIndF 𝑊)
2 rellindf 21717 . . . . . 6 Rel LIndF
32brrelex1i 5694 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
4 lindff.b . . . . . 6 𝐵 = (Base‘𝑊)
5 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 eqid 2729 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
7 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 eqid 2729 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 8, 9islindf 21721 . . . . 5 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
113, 10sylan2 593 . . . 4 ((𝑊𝑌𝐹 LIndF 𝑊) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
1211ancoms 458 . . 3 ((𝐹 LIndF 𝑊𝑊𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
131, 12mpbid 232 . 2 ((𝐹 LIndF 𝑊𝑊𝑌) → (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
1413simpld 494 1 ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3447  cdif 3911  {csn 4589   class class class wbr 5107  dom cdm 5638  cima 5641  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LSpanclspn 20877   LIndF clindf 21713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-lindf 21715
This theorem is referenced by:  lindfind2  21727  lindff1  21729  lindfrn  21730  f1lindf  21731  indlcim  21749
  Copyright terms: Public domain W3C validator