MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff Structured version   Visualization version   GIF version

Theorem lindff 21752
Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lindff.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
lindff ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)

Proof of Theorem lindff
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹 LIndF 𝑊)
2 rellindf 21745 . . . . . 6 Rel LIndF
32brrelex1i 5670 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
4 lindff.b . . . . . 6 𝐵 = (Base‘𝑊)
5 eqid 2731 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 eqid 2731 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
7 eqid 2731 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2731 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 eqid 2731 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 8, 9islindf 21749 . . . . 5 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
113, 10sylan2 593 . . . 4 ((𝑊𝑌𝐹 LIndF 𝑊) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
1211ancoms 458 . . 3 ((𝐹 LIndF 𝑊𝑊𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
131, 12mpbid 232 . 2 ((𝐹 LIndF 𝑊𝑊𝑌) → (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
1413simpld 494 1 ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  {csn 4573   class class class wbr 5089  dom cdm 5614  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LSpanclspn 20904   LIndF clindf 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-lindf 21743
This theorem is referenced by:  lindfind2  21755  lindff1  21757  lindfrn  21758  f1lindf  21759  indlcim  21777
  Copyright terms: Public domain W3C validator