MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindff Structured version   Visualization version   GIF version

Theorem lindff 20959
Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
lindff.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
lindff ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)

Proof of Theorem lindff
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . 3 ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹 LIndF 𝑊)
2 rellindf 20952 . . . . . 6 Rel LIndF
32brrelex1i 5608 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
4 lindff.b . . . . . 6 𝐵 = (Base‘𝑊)
5 eqid 2821 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 eqid 2821 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
7 eqid 2821 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
8 eqid 2821 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
9 eqid 2821 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 8, 9islindf 20956 . . . . 5 ((𝑊𝑌𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
113, 10sylan2 594 . . . 4 ((𝑊𝑌𝐹 LIndF 𝑊) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
1211ancoms 461 . . 3 ((𝐹 LIndF 𝑊𝑊𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))))
131, 12mpbid 234 . 2 ((𝐹 LIndF 𝑊𝑊𝑌) → (𝐹:dom 𝐹𝐵 ∧ ∀𝑥 ∈ dom 𝐹𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)(𝐹𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))
1413simpld 497 1 ((𝐹 LIndF 𝑊𝑊𝑌) → 𝐹:dom 𝐹𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  Vcvv 3494  cdif 3933  {csn 4567   class class class wbr 5066  dom cdm 5555  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  LSpanclspn 19743   LIndF clindf 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-lindf 20950
This theorem is referenced by:  lindfind2  20962  lindff1  20964  lindfrn  20965  f1lindf  20966  indlcim  20984
  Copyright terms: Public domain W3C validator