Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lindff | Structured version Visualization version GIF version |
Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindff.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
lindff | ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . 3 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹 LIndF 𝑊) | |
2 | rellindf 21015 | . . . . . 6 ⊢ Rel LIndF | |
3 | 2 | brrelex1i 5643 | . . . . 5 ⊢ (𝐹 LIndF 𝑊 → 𝐹 ∈ V) |
4 | lindff.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
5 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | eqid 2738 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
7 | eqid 2738 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
9 | eqid 2738 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 4, 5, 6, 7, 8, 9 | islindf 21019 | . . . . 5 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
11 | 3, 10 | sylan2 593 | . . . 4 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 LIndF 𝑊) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
12 | 11 | ancoms 459 | . . 3 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
13 | 1, 12 | mpbid 231 | . 2 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
14 | 13 | simpld 495 | 1 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ∖ cdif 3884 {csn 4561 class class class wbr 5074 dom cdm 5589 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 Scalarcsca 16965 ·𝑠 cvsca 16966 0gc0g 17150 LSpanclspn 20233 LIndF clindf 21011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-lindf 21013 |
This theorem is referenced by: lindfind2 21025 lindff1 21027 lindfrn 21028 f1lindf 21029 indlcim 21047 |
Copyright terms: Public domain | W3C validator |