![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lindff | Structured version Visualization version GIF version |
Description: Functional property of a linearly independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
Ref | Expression |
---|---|
lindff.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
lindff | ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 475 | . . 3 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹 LIndF 𝑊) | |
2 | rellindf 20468 | . . . . . 6 ⊢ Rel LIndF | |
3 | 2 | brrelex1i 5361 | . . . . 5 ⊢ (𝐹 LIndF 𝑊 → 𝐹 ∈ V) |
4 | lindff.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
5 | eqid 2797 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | eqid 2797 | . . . . . 6 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
7 | eqid 2797 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
8 | eqid 2797 | . . . . . 6 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
9 | eqid 2797 | . . . . . 6 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 4, 5, 6, 7, 8, 9 | islindf 20472 | . . . . 5 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
11 | 3, 10 | sylan2 587 | . . . 4 ⊢ ((𝑊 ∈ 𝑌 ∧ 𝐹 LIndF 𝑊) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
12 | 11 | ancoms 451 | . . 3 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥})))))) |
13 | 1, 12 | mpbid 224 | . 2 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → (𝐹:dom 𝐹⟶𝐵 ∧ ∀𝑥 ∈ dom 𝐹∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠 ‘𝑊)(𝐹‘𝑥)) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {𝑥}))))) |
14 | 13 | simpld 489 | 1 ⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ 𝑌) → 𝐹:dom 𝐹⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 Vcvv 3383 ∖ cdif 3764 {csn 4366 class class class wbr 4841 dom cdm 5310 “ cima 5313 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 Basecbs 16180 Scalarcsca 16266 ·𝑠 cvsca 16267 0gc0g 16411 LSpanclspn 19288 LIndF clindf 20464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2375 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-fv 6107 df-ov 6879 df-lindf 20466 |
This theorem is referenced by: lindfind2 20478 lindff1 20480 lindfrn 20481 f1lindf 20482 indlcim 20500 |
Copyright terms: Public domain | W3C validator |