MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1lindf Structured version   Visualization version   GIF version

Theorem f1lindf 21842
Description: Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
f1lindf ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)

Proof of Theorem f1lindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
21lindff 21835 . . . . . 6 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 458 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
433adant3 1133 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊))
5 f1f 6804 . . . . 5 (𝐺:𝐾1-1→dom 𝐹𝐺:𝐾⟶dom 𝐹)
653ad2ant3 1136 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾⟶dom 𝐹)
7 fco 6760 . . . 4 ((𝐹:dom 𝐹⟶(Base‘𝑊) ∧ 𝐺:𝐾⟶dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
84, 6, 7syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
98ffdmd 6766 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊))
10 simpl2 1193 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
116adantr 480 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺:𝐾⟶dom 𝐹)
128fdmd 6746 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom (𝐹𝐺) = 𝐾)
1312eleq2d 2827 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝑥 ∈ dom (𝐹𝐺) ↔ 𝑥𝐾))
1413biimpa 476 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝑥𝐾)
1511, 14ffvelcdmd 7105 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝐺𝑥) ∈ dom 𝐹)
1615adantrr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐺𝑥) ∈ dom 𝐹)
17 eldifi 4131 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
1817ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
19 eldifsni 4790 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
2019ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
21 eqid 2737 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
22 eqid 2737 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
23 eqid 2737 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2737 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2737 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2621, 22, 23, 24, 25lindfind 21836 . . . . 5 (((𝐹 LIndF 𝑊 ∧ (𝐺𝑥) ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
2710, 16, 18, 20, 26syl22anc 839 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
28 f1fn 6805 . . . . . . . . . . 11 (𝐺:𝐾1-1→dom 𝐹𝐺 Fn 𝐾)
29283ad2ant3 1136 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 Fn 𝐾)
3029adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺 Fn 𝐾)
31 fvco2 7006 . . . . . . . . 9 ((𝐺 Fn 𝐾𝑥𝐾) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3230, 14, 31syl2anc 584 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3332oveq2d 7447 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) = (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))))
3433eleq1d 2826 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})))))
35 simpl1 1192 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝑊 ∈ LMod)
36 imassrn 6089 . . . . . . . . . . 11 (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ ran 𝐹
374frnd 6744 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ran 𝐹 ⊆ (Base‘𝑊))
3836, 37sstrid 3995 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
3938adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
40 imaco 6271 . . . . . . . . . 10 ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})))
4112difeq1d 4125 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (dom (𝐹𝐺) ∖ {𝑥}) = (𝐾 ∖ {𝑥}))
4241imaeq2d 6078 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐺 “ (𝐾 ∖ {𝑥})))
43 df-f1 6566 . . . . . . . . . . . . . . . . 17 (𝐺:𝐾1-1→dom 𝐹 ↔ (𝐺:𝐾⟶dom 𝐹 ∧ Fun 𝐺))
4443simprbi 496 . . . . . . . . . . . . . . . 16 (𝐺:𝐾1-1→dom 𝐹 → Fun 𝐺)
45443ad2ant3 1136 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → Fun 𝐺)
46 imadif 6650 . . . . . . . . . . . . . . 15 (Fun 𝐺 → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4745, 46syl 17 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4842, 47eqtrd 2777 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4948adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
50 fnsnfv 6988 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐾𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5129, 50sylan 580 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5251difeq2d 4126 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
53 imassrn 6089 . . . . . . . . . . . . . . 15 (𝐺𝐾) ⊆ ran 𝐺
546adantr 480 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝐺:𝐾⟶dom 𝐹)
5554frnd 6744 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ran 𝐺 ⊆ dom 𝐹)
5653, 55sstrid 3995 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺𝐾) ⊆ dom 𝐹)
5756ssdifd 4145 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
5852, 57eqsstrrd 4019 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ (𝐺 “ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
5949, 58eqsstrd 4018 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
60 imass2 6120 . . . . . . . . . . 11 ((𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6159, 60syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6240, 61eqsstrid 4022 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
631, 22lspss 20982 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊) ∧ ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6435, 39, 62, 63syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6514, 64syldan 591 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6665sseld 3982 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6734, 66sylbid 240 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6867adantrr 717 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6927, 68mtod 198 . . 3 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
7069ralrimivva 3202 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
71 simp1 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝑊 ∈ LMod)
72 rellindf 21828 . . . . . 6 Rel LIndF
7372brrelex1i 5741 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
74733ad2ant2 1135 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹 ∈ V)
75 simp3 1139 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾1-1→dom 𝐹)
7674dmexd 7925 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom 𝐹 ∈ V)
77 f1dmex 7981 . . . . . 6 ((𝐺:𝐾1-1→dom 𝐹 ∧ dom 𝐹 ∈ V) → 𝐾 ∈ V)
7875, 76, 77syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐾 ∈ V)
796, 78fexd 7247 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 ∈ V)
80 coexg 7951 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
8174, 79, 80syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) ∈ V)
821, 21, 22, 23, 25, 24islindf 21832 . . 3 ((𝑊 ∈ LMod ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
8371, 81, 82syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
849, 70, 83mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  cdif 3948  wss 3951  {csn 4626   class class class wbr 5143  ccnv 5684  dom cdm 5685  ran crn 5686  cima 5688  ccom 5689  Fun wfun 6555   Fn wfn 6556  wf 6557  1-1wf1 6558  cfv 6561  (class class class)co 7431  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  LModclmod 20858  LSpanclspn 20969   LIndF clindf 21824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-slot 17219  df-ndx 17231  df-base 17248  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lindf 21826
This theorem is referenced by:  lindfres  21843  f1linds  21845
  Copyright terms: Public domain W3C validator