MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1lindf Structured version   Visualization version   GIF version

Theorem f1lindf 21764
Description: Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
f1lindf ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)

Proof of Theorem f1lindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
21lindff 21757 . . . . . 6 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 458 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
433adant3 1132 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊))
5 f1f 6738 . . . . 5 (𝐺:𝐾1-1→dom 𝐹𝐺:𝐾⟶dom 𝐹)
653ad2ant3 1135 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾⟶dom 𝐹)
7 fco 6694 . . . 4 ((𝐹:dom 𝐹⟶(Base‘𝑊) ∧ 𝐺:𝐾⟶dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
84, 6, 7syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
98ffdmd 6700 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊))
10 simpl2 1193 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
116adantr 480 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺:𝐾⟶dom 𝐹)
128fdmd 6680 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom (𝐹𝐺) = 𝐾)
1312eleq2d 2814 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝑥 ∈ dom (𝐹𝐺) ↔ 𝑥𝐾))
1413biimpa 476 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝑥𝐾)
1511, 14ffvelcdmd 7039 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝐺𝑥) ∈ dom 𝐹)
1615adantrr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐺𝑥) ∈ dom 𝐹)
17 eldifi 4090 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
1817ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
19 eldifsni 4750 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
2019ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
21 eqid 2729 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
22 eqid 2729 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
23 eqid 2729 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2729 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2729 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2621, 22, 23, 24, 25lindfind 21758 . . . . 5 (((𝐹 LIndF 𝑊 ∧ (𝐺𝑥) ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
2710, 16, 18, 20, 26syl22anc 838 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
28 f1fn 6739 . . . . . . . . . . 11 (𝐺:𝐾1-1→dom 𝐹𝐺 Fn 𝐾)
29283ad2ant3 1135 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 Fn 𝐾)
3029adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺 Fn 𝐾)
31 fvco2 6940 . . . . . . . . 9 ((𝐺 Fn 𝐾𝑥𝐾) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3230, 14, 31syl2anc 584 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3332oveq2d 7385 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) = (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))))
3433eleq1d 2813 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})))))
35 simpl1 1192 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝑊 ∈ LMod)
36 imassrn 6031 . . . . . . . . . . 11 (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ ran 𝐹
374frnd 6678 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ran 𝐹 ⊆ (Base‘𝑊))
3836, 37sstrid 3955 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
3938adantr 480 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
40 imaco 6212 . . . . . . . . . 10 ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})))
4112difeq1d 4084 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (dom (𝐹𝐺) ∖ {𝑥}) = (𝐾 ∖ {𝑥}))
4241imaeq2d 6020 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐺 “ (𝐾 ∖ {𝑥})))
43 df-f1 6504 . . . . . . . . . . . . . . . . 17 (𝐺:𝐾1-1→dom 𝐹 ↔ (𝐺:𝐾⟶dom 𝐹 ∧ Fun 𝐺))
4443simprbi 496 . . . . . . . . . . . . . . . 16 (𝐺:𝐾1-1→dom 𝐹 → Fun 𝐺)
45443ad2ant3 1135 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → Fun 𝐺)
46 imadif 6584 . . . . . . . . . . . . . . 15 (Fun 𝐺 → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4745, 46syl 17 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4842, 47eqtrd 2764 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4948adantr 480 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
50 fnsnfv 6922 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐾𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5129, 50sylan 580 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5251difeq2d 4085 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
53 imassrn 6031 . . . . . . . . . . . . . . 15 (𝐺𝐾) ⊆ ran 𝐺
546adantr 480 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝐺:𝐾⟶dom 𝐹)
5554frnd 6678 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ran 𝐺 ⊆ dom 𝐹)
5653, 55sstrid 3955 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺𝐾) ⊆ dom 𝐹)
5756ssdifd 4104 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
5852, 57eqsstrrd 3979 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ (𝐺 “ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
5949, 58eqsstrd 3978 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
60 imass2 6062 . . . . . . . . . . 11 ((𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6159, 60syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6240, 61eqsstrid 3982 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
631, 22lspss 20922 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊) ∧ ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6435, 39, 62, 63syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6514, 64syldan 591 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6665sseld 3942 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6734, 66sylbid 240 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6867adantrr 717 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6927, 68mtod 198 . . 3 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
7069ralrimivva 3178 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
71 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝑊 ∈ LMod)
72 rellindf 21750 . . . . . 6 Rel LIndF
7372brrelex1i 5687 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
74733ad2ant2 1134 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹 ∈ V)
75 simp3 1138 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾1-1→dom 𝐹)
7674dmexd 7859 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom 𝐹 ∈ V)
77 f1dmex 7915 . . . . . 6 ((𝐺:𝐾1-1→dom 𝐹 ∧ dom 𝐹 ∈ V) → 𝐾 ∈ V)
7875, 76, 77syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐾 ∈ V)
796, 78fexd 7183 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 ∈ V)
80 coexg 7885 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
8174, 79, 80syl2anc 584 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) ∈ V)
821, 21, 22, 23, 25, 24islindf 21754 . . 3 ((𝑊 ∈ LMod ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
8371, 81, 82syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
849, 70, 83mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cdif 3908  wss 3911  {csn 4585   class class class wbr 5102  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  ccom 5635  Fun wfun 6493   Fn wfn 6494  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  LModclmod 20798  LSpanclspn 20909   LIndF clindf 21746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lindf 21748
This theorem is referenced by:  lindfres  21765  f1linds  21767
  Copyright terms: Public domain W3C validator