MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1lindf Structured version   Visualization version   GIF version

Theorem f1lindf 20738
Description: Rearranging and deleting elements from an independent family gives an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Assertion
Ref Expression
f1lindf ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)

Proof of Theorem f1lindf
Dummy variables 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
21lindff 20731 . . . . . 6 ((𝐹 LIndF 𝑊𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊))
32ancoms 462 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊))
433adant3 1134 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊))
5 f1f 6593 . . . . 5 (𝐺:𝐾1-1→dom 𝐹𝐺:𝐾⟶dom 𝐹)
653ad2ant3 1137 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾⟶dom 𝐹)
7 fco 6547 . . . 4 ((𝐹:dom 𝐹⟶(Base‘𝑊) ∧ 𝐺:𝐾⟶dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
84, 6, 7syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):𝐾⟶(Base‘𝑊))
98ffdmd 6554 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊))
10 simpl2 1194 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊)
116adantr 484 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺:𝐾⟶dom 𝐹)
128fdmd 6534 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom (𝐹𝐺) = 𝐾)
1312eleq2d 2816 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝑥 ∈ dom (𝐹𝐺) ↔ 𝑥𝐾))
1413biimpa 480 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝑥𝐾)
1511, 14ffvelrnd 6883 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝐺𝑥) ∈ dom 𝐹)
1615adantrr 717 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐺𝑥) ∈ dom 𝐹)
17 eldifi 4027 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
1817ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
19 eldifsni 4689 . . . . . 6 (𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
2019ad2antll 729 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
21 eqid 2736 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
22 eqid 2736 . . . . . 6 (LSpan‘𝑊) = (LSpan‘𝑊)
23 eqid 2736 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
24 eqid 2736 . . . . . 6 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
25 eqid 2736 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2621, 22, 23, 24, 25lindfind 20732 . . . . 5 (((𝐹 LIndF 𝑊 ∧ (𝐺𝑥) ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
2710, 16, 18, 20, 26syl22anc 839 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
28 f1fn 6594 . . . . . . . . . . 11 (𝐺:𝐾1-1→dom 𝐹𝐺 Fn 𝐾)
29283ad2ant3 1137 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 Fn 𝐾)
3029adantr 484 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → 𝐺 Fn 𝐾)
31 fvco2 6786 . . . . . . . . 9 ((𝐺 Fn 𝐾𝑥𝐾) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3230, 14, 31syl2anc 587 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
3332oveq2d 7207 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) = (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))))
3433eleq1d 2815 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ↔ (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})))))
35 simpl1 1193 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝑊 ∈ LMod)
36 imassrn 5925 . . . . . . . . . . 11 (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ ran 𝐹
374frnd 6531 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ran 𝐹 ⊆ (Base‘𝑊))
3836, 37sstrid 3898 . . . . . . . . . 10 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
3938adantr 484 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊))
40 imaco 6095 . . . . . . . . . 10 ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})))
4112difeq1d 4022 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (dom (𝐹𝐺) ∖ {𝑥}) = (𝐾 ∖ {𝑥}))
4241imaeq2d 5914 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = (𝐺 “ (𝐾 ∖ {𝑥})))
43 df-f1 6363 . . . . . . . . . . . . . . . . 17 (𝐺:𝐾1-1→dom 𝐹 ↔ (𝐺:𝐾⟶dom 𝐹 ∧ Fun 𝐺))
4443simprbi 500 . . . . . . . . . . . . . . . 16 (𝐺:𝐾1-1→dom 𝐹 → Fun 𝐺)
45443ad2ant3 1137 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → Fun 𝐺)
46 imadif 6442 . . . . . . . . . . . . . . 15 (Fun 𝐺 → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4745, 46syl 17 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4842, 47eqtrd 2771 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
4948adantr 484 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
50 fnsnfv 6768 . . . . . . . . . . . . . . 15 ((𝐺 Fn 𝐾𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5129, 50sylan 583 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → {(𝐺𝑥)} = (𝐺 “ {𝑥}))
5251difeq2d 4023 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) = ((𝐺𝐾) ∖ (𝐺 “ {𝑥})))
53 imassrn 5925 . . . . . . . . . . . . . . 15 (𝐺𝐾) ⊆ ran 𝐺
546adantr 484 . . . . . . . . . . . . . . . 16 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → 𝐺:𝐾⟶dom 𝐹)
5554frnd 6531 . . . . . . . . . . . . . . 15 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ran 𝐺 ⊆ dom 𝐹)
5653, 55sstrid 3898 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺𝐾) ⊆ dom 𝐹)
5756ssdifd 4041 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ {(𝐺𝑥)}) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
5852, 57eqsstrrd 3926 . . . . . . . . . . . 12 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐺𝐾) ∖ (𝐺 “ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
5949, 58eqsstrd 3925 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}))
60 imass2 5950 . . . . . . . . . . 11 ((𝐺 “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺𝑥)}) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6159, 60syl 17 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → (𝐹 “ (𝐺 “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
6240, 61eqsstrid 3935 . . . . . . . . 9 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))
631, 22lspss 19975 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})) ⊆ (Base‘𝑊) ∧ ((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6435, 39, 62, 63syl3anc 1373 . . . . . . . 8 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥𝐾) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6514, 64syldan 594 . . . . . . 7 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)}))))
6665sseld 3886 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6734, 66sylbid 243 . . . . 5 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹𝐺)) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6867adantrr 717 . . . 4 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠𝑊)(𝐹‘(𝐺𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺𝑥)})))))
6927, 68mtod 201 . . 3 (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
7069ralrimivva 3102 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))
71 simp1 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝑊 ∈ LMod)
72 rellindf 20724 . . . . . 6 Rel LIndF
7372brrelex1i 5590 . . . . 5 (𝐹 LIndF 𝑊𝐹 ∈ V)
74733ad2ant2 1136 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐹 ∈ V)
75 simp3 1140 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺:𝐾1-1→dom 𝐹)
7674dmexd 7661 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → dom 𝐹 ∈ V)
77 f1dmex 7708 . . . . . 6 ((𝐺:𝐾1-1→dom 𝐹 ∧ dom 𝐹 ∈ V) → 𝐾 ∈ V)
7875, 76, 77syl2anc 587 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐾 ∈ V)
796, 78fexd 7021 . . . 4 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → 𝐺 ∈ V)
80 coexg 7685 . . . 4 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹𝐺) ∈ V)
8174, 79, 80syl2anc 587 . . 3 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) ∈ V)
821, 21, 22, 23, 25, 24islindf 20728 . . 3 ((𝑊 ∈ LMod ∧ (𝐹𝐺) ∈ V) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
8371, 81, 82syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → ((𝐹𝐺) LIndF 𝑊 ↔ ((𝐹𝐺):dom (𝐹𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠𝑊)((𝐹𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹𝐺) “ (dom (𝐹𝐺) ∖ {𝑥}))))))
849, 70, 83mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊𝐺:𝐾1-1→dom 𝐹) → (𝐹𝐺) LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wne 2932  wral 3051  Vcvv 3398  cdif 3850  wss 3853  {csn 4527   class class class wbr 5039  ccnv 5535  dom cdm 5536  ran crn 5537  cima 5539  ccom 5540  Fun wfun 6352   Fn wfn 6353  wf 6354  1-1wf1 6355  cfv 6358  (class class class)co 7191  Basecbs 16666  Scalarcsca 16752   ·𝑠 cvsca 16753  0gc0g 16898  LModclmod 19853  LSpanclspn 19962   LIndF clindf 20720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-1cn 10752  ax-addcl 10754
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-nn 11796  df-ndx 16669  df-slot 16670  df-base 16672  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lindf 20722
This theorem is referenced by:  lindfres  20739  f1linds  20741
  Copyright terms: Public domain W3C validator