| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 2 | 1 | lindff 21835 |
. . . . . 6
⊢ ((𝐹 LIndF 𝑊 ∧ 𝑊 ∈ LMod) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
| 3 | 2 | ancoms 458 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
| 4 | 3 | 3adant3 1133 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐹:dom 𝐹⟶(Base‘𝑊)) |
| 5 | | f1f 6804 |
. . . . 5
⊢ (𝐺:𝐾–1-1→dom 𝐹 → 𝐺:𝐾⟶dom 𝐹) |
| 6 | 5 | 3ad2ant3 1136 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐺:𝐾⟶dom 𝐹) |
| 7 | | fco 6760 |
. . . 4
⊢ ((𝐹:dom 𝐹⟶(Base‘𝑊) ∧ 𝐺:𝐾⟶dom 𝐹) → (𝐹 ∘ 𝐺):𝐾⟶(Base‘𝑊)) |
| 8 | 4, 6, 7 | syl2anc 584 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺):𝐾⟶(Base‘𝑊)) |
| 9 | 8 | ffdmd 6766 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶(Base‘𝑊)) |
| 10 | | simpl2 1193 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝐹 LIndF 𝑊) |
| 11 | 6 | adantr 480 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → 𝐺:𝐾⟶dom 𝐹) |
| 12 | 8 | fdmd 6746 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → dom (𝐹 ∘ 𝐺) = 𝐾) |
| 13 | 12 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝑥 ∈ dom (𝐹 ∘ 𝐺) ↔ 𝑥 ∈ 𝐾)) |
| 14 | 13 | biimpa 476 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → 𝑥 ∈ 𝐾) |
| 15 | 11, 14 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → (𝐺‘𝑥) ∈ dom 𝐹) |
| 16 | 15 | adantrr 717 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → (𝐺‘𝑥) ∈ dom 𝐹) |
| 17 | | eldifi 4131 |
. . . . . 6
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
| 18 | 17 | ad2antll 729 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑘 ∈ (Base‘(Scalar‘𝑊))) |
| 19 | | eldifsni 4790 |
. . . . . 6
⊢ (𝑘 ∈
((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) → 𝑘 ≠
(0g‘(Scalar‘𝑊))) |
| 20 | 19 | ad2antll 729 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → 𝑘 ≠
(0g‘(Scalar‘𝑊))) |
| 21 | | eqid 2737 |
. . . . . 6
⊢ (
·𝑠 ‘𝑊) = ( ·𝑠
‘𝑊) |
| 22 | | eqid 2737 |
. . . . . 6
⊢
(LSpan‘𝑊) =
(LSpan‘𝑊) |
| 23 | | eqid 2737 |
. . . . . 6
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
| 24 | | eqid 2737 |
. . . . . 6
⊢
(0g‘(Scalar‘𝑊)) =
(0g‘(Scalar‘𝑊)) |
| 25 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) |
| 26 | 21, 22, 23, 24, 25 | lindfind 21836 |
. . . . 5
⊢ (((𝐹 LIndF 𝑊 ∧ (𝐺‘𝑥) ∈ dom 𝐹) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠
(0g‘(Scalar‘𝑊)))) → ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})))) |
| 27 | 10, 16, 18, 20, 26 | syl22anc 839 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})))) |
| 28 | | f1fn 6805 |
. . . . . . . . . . 11
⊢ (𝐺:𝐾–1-1→dom 𝐹 → 𝐺 Fn 𝐾) |
| 29 | 28 | 3ad2ant3 1136 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐺 Fn 𝐾) |
| 30 | 29 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → 𝐺 Fn 𝐾) |
| 31 | | fvco2 7006 |
. . . . . . . . 9
⊢ ((𝐺 Fn 𝐾 ∧ 𝑥 ∈ 𝐾) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 32 | 30, 14, 31 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → ((𝐹 ∘ 𝐺)‘𝑥) = (𝐹‘(𝐺‘𝑥))) |
| 33 | 32 | oveq2d 7447 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → (𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) = (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥)))) |
| 34 | 33 | eleq1d 2826 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → ((𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) ↔ (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))))) |
| 35 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → 𝑊 ∈ LMod) |
| 36 | | imassrn 6089 |
. . . . . . . . . . 11
⊢ (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})) ⊆ ran 𝐹 |
| 37 | 4 | frnd 6744 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → ran 𝐹 ⊆ (Base‘𝑊)) |
| 38 | 36, 37 | sstrid 3995 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})) ⊆ (Base‘𝑊)) |
| 39 | 38 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})) ⊆ (Base‘𝑊)) |
| 40 | | imaco 6271 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) = (𝐹 “ (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) |
| 41 | 12 | difeq1d 4125 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (dom (𝐹 ∘ 𝐺) ∖ {𝑥}) = (𝐾 ∖ {𝑥})) |
| 42 | 41 | imaeq2d 6078 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) = (𝐺 “ (𝐾 ∖ {𝑥}))) |
| 43 | | df-f1 6566 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺:𝐾–1-1→dom 𝐹 ↔ (𝐺:𝐾⟶dom 𝐹 ∧ Fun ◡𝐺)) |
| 44 | 43 | simprbi 496 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺:𝐾–1-1→dom 𝐹 → Fun ◡𝐺) |
| 45 | 44 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . 15
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → Fun ◡𝐺) |
| 46 | | imadif 6650 |
. . . . . . . . . . . . . . 15
⊢ (Fun
◡𝐺 → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺 “ 𝐾) ∖ (𝐺 “ {𝑥}))) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐺 “ (𝐾 ∖ {𝑥})) = ((𝐺 “ 𝐾) ∖ (𝐺 “ {𝑥}))) |
| 48 | 42, 47 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) = ((𝐺 “ 𝐾) ∖ (𝐺 “ {𝑥}))) |
| 49 | 48 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) = ((𝐺 “ 𝐾) ∖ (𝐺 “ {𝑥}))) |
| 50 | | fnsnfv 6988 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 Fn 𝐾 ∧ 𝑥 ∈ 𝐾) → {(𝐺‘𝑥)} = (𝐺 “ {𝑥})) |
| 51 | 29, 50 | sylan 580 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → {(𝐺‘𝑥)} = (𝐺 “ {𝑥})) |
| 52 | 51 | difeq2d 4126 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → ((𝐺 “ 𝐾) ∖ {(𝐺‘𝑥)}) = ((𝐺 “ 𝐾) ∖ (𝐺 “ {𝑥}))) |
| 53 | | imassrn 6089 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 “ 𝐾) ⊆ ran 𝐺 |
| 54 | 6 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → 𝐺:𝐾⟶dom 𝐹) |
| 55 | 54 | frnd 6744 |
. . . . . . . . . . . . . . 15
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → ran 𝐺 ⊆ dom 𝐹) |
| 56 | 53, 55 | sstrid 3995 |
. . . . . . . . . . . . . 14
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → (𝐺 “ 𝐾) ⊆ dom 𝐹) |
| 57 | 56 | ssdifd 4145 |
. . . . . . . . . . . . 13
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → ((𝐺 “ 𝐾) ∖ {(𝐺‘𝑥)}) ⊆ (dom 𝐹 ∖ {(𝐺‘𝑥)})) |
| 58 | 52, 57 | eqsstrrd 4019 |
. . . . . . . . . . . 12
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → ((𝐺 “ 𝐾) ∖ (𝐺 “ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺‘𝑥)})) |
| 59 | 49, 58 | eqsstrd 4018 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺‘𝑥)})) |
| 60 | | imass2 6120 |
. . . . . . . . . . 11
⊢ ((𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) ⊆ (dom 𝐹 ∖ {(𝐺‘𝑥)}) → (𝐹 “ (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))) |
| 61 | 59, 60 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → (𝐹 “ (𝐺 “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))) |
| 62 | 40, 61 | eqsstrid 4022 |
. . . . . . . . 9
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → ((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))) |
| 63 | 1, 22 | lspss 20982 |
. . . . . . . . 9
⊢ ((𝑊 ∈ LMod ∧ (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})) ⊆ (Base‘𝑊) ∧ ((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})) ⊆ (𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))) → ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})))) |
| 64 | 35, 39, 62, 63 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ 𝐾) → ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})))) |
| 65 | 14, 64 | syldan 591 |
. . . . . . 7
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) ⊆ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)})))) |
| 66 | 65 | sseld 3982 |
. . . . . 6
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → ((𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))))) |
| 67 | 34, 66 | sylbid 240 |
. . . . 5
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ 𝑥 ∈ dom (𝐹 ∘ 𝐺)) → ((𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))))) |
| 68 | 67 | adantrr 717 |
. . . 4
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ((𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥}))) → (𝑘( ·𝑠
‘𝑊)(𝐹‘(𝐺‘𝑥))) ∈ ((LSpan‘𝑊)‘(𝐹 “ (dom 𝐹 ∖ {(𝐺‘𝑥)}))))) |
| 69 | 27, 68 | mtod 198 |
. . 3
⊢ (((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) ∧ (𝑥 ∈ dom (𝐹 ∘ 𝐺) ∧ 𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}))) → ¬ (𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})))) |
| 70 | 69 | ralrimivva 3202 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})))) |
| 71 | | simp1 1137 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝑊 ∈ LMod) |
| 72 | | rellindf 21828 |
. . . . . 6
⊢ Rel
LIndF |
| 73 | 72 | brrelex1i 5741 |
. . . . 5
⊢ (𝐹 LIndF 𝑊 → 𝐹 ∈ V) |
| 74 | 73 | 3ad2ant2 1135 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐹 ∈ V) |
| 75 | | simp3 1139 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐺:𝐾–1-1→dom 𝐹) |
| 76 | 74 | dmexd 7925 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → dom 𝐹 ∈ V) |
| 77 | | f1dmex 7981 |
. . . . . 6
⊢ ((𝐺:𝐾–1-1→dom 𝐹 ∧ dom 𝐹 ∈ V) → 𝐾 ∈ V) |
| 78 | 75, 76, 77 | syl2anc 584 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐾 ∈ V) |
| 79 | 6, 78 | fexd 7247 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → 𝐺 ∈ V) |
| 80 | | coexg 7951 |
. . . 4
⊢ ((𝐹 ∈ V ∧ 𝐺 ∈ V) → (𝐹 ∘ 𝐺) ∈ V) |
| 81 | 74, 79, 80 | syl2anc 584 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) ∈ V) |
| 82 | 1, 21, 22, 23, 25, 24 | islindf 21832 |
. . 3
⊢ ((𝑊 ∈ LMod ∧ (𝐹 ∘ 𝐺) ∈ V) → ((𝐹 ∘ 𝐺) LIndF 𝑊 ↔ ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})))))) |
| 83 | 71, 81, 82 | syl2anc 584 |
. 2
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → ((𝐹 ∘ 𝐺) LIndF 𝑊 ↔ ((𝐹 ∘ 𝐺):dom (𝐹 ∘ 𝐺)⟶(Base‘𝑊) ∧ ∀𝑥 ∈ dom (𝐹 ∘ 𝐺)∀𝑘 ∈ ((Base‘(Scalar‘𝑊)) ∖
{(0g‘(Scalar‘𝑊))}) ¬ (𝑘( ·𝑠
‘𝑊)((𝐹 ∘ 𝐺)‘𝑥)) ∈ ((LSpan‘𝑊)‘((𝐹 ∘ 𝐺) “ (dom (𝐹 ∘ 𝐺) ∖ {𝑥})))))) |
| 84 | 9, 70, 83 | mpbir2and 713 |
1
⊢ ((𝑊 ∈ LMod ∧ 𝐹 LIndF 𝑊 ∧ 𝐺:𝐾–1-1→dom 𝐹) → (𝐹 ∘ 𝐺) LIndF 𝑊) |