MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind Structured version   Visualization version   GIF version

Theorem lindfind 21732
Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindfind (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))

Proof of Theorem lindfind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸 ∈ dom 𝐹)
2 eldifsn 4753 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 simpll 766 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 LIndF 𝑊)
6 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
7 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
86, 7elbasfv 17192 . . . . . 6 (𝐴𝐾𝑊 ∈ V)
98ad2antrl 728 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝑊 ∈ V)
10 rellindf 21724 . . . . . . 7 Rel LIndF
1110brrelex1i 5697 . . . . . 6 (𝐹 LIndF 𝑊𝐹 ∈ V)
1211ad2antrr 726 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 ∈ V)
13 eqid 2730 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 lindfind.s . . . . . 6 · = ( ·𝑠𝑊)
15 lindfind.n . . . . . 6 𝑁 = (LSpan‘𝑊)
16 lindfind.z . . . . . 6 0 = (0g𝐿)
1713, 14, 15, 6, 7, 16islindf 21728 . . . . 5 ((𝑊 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
189, 12, 17syl2anc 584 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
195, 18mpbid 232 . . 3 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))))
2019simprd 495 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))
21 fveq2 6861 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
2221oveq2d 7406 . . . . 5 (𝑒 = 𝐸 → (𝑎 · (𝐹𝑒)) = (𝑎 · (𝐹𝐸)))
23 sneq 4602 . . . . . . . 8 (𝑒 = 𝐸 → {𝑒} = {𝐸})
2423difeq2d 4092 . . . . . . 7 (𝑒 = 𝐸 → (dom 𝐹 ∖ {𝑒}) = (dom 𝐹 ∖ {𝐸}))
2524imaeq2d 6034 . . . . . 6 (𝑒 = 𝐸 → (𝐹 “ (dom 𝐹 ∖ {𝑒})) = (𝐹 “ (dom 𝐹 ∖ {𝐸})))
2625fveq2d 6865 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) = (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
2722, 26eleq12d 2823 . . . 4 (𝑒 = 𝐸 → ((𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
2827notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ ¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
29 oveq1 7397 . . . . 5 (𝑎 = 𝐴 → (𝑎 · (𝐹𝐸)) = (𝐴 · (𝐹𝐸)))
3029eleq1d 2814 . . . 4 (𝑎 = 𝐴 → ((𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3130notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3228, 31rspc2va 3603 . 2 (((𝐸 ∈ dom 𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
331, 4, 20, 32syl21anc 837 1 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wral 3045  Vcvv 3450  cdif 3914  {csn 4592   class class class wbr 5110  dom cdm 5641  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LSpanclspn 20884   LIndF clindf 21720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-slot 17159  df-ndx 17171  df-base 17187  df-lindf 21722
This theorem is referenced by:  lindfind2  21734  lindfrn  21737  f1lindf  21738
  Copyright terms: Public domain W3C validator