MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind Structured version   Visualization version   GIF version

Theorem lindfind 21723
Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindfind (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))

Proof of Theorem lindfind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸 ∈ dom 𝐹)
2 eldifsn 4737 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 simpll 766 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 LIndF 𝑊)
6 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
7 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
86, 7elbasfv 17126 . . . . . 6 (𝐴𝐾𝑊 ∈ V)
98ad2antrl 728 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝑊 ∈ V)
10 rellindf 21715 . . . . . . 7 Rel LIndF
1110brrelex1i 5675 . . . . . 6 (𝐹 LIndF 𝑊𝐹 ∈ V)
1211ad2antrr 726 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 ∈ V)
13 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 lindfind.s . . . . . 6 · = ( ·𝑠𝑊)
15 lindfind.n . . . . . 6 𝑁 = (LSpan‘𝑊)
16 lindfind.z . . . . . 6 0 = (0g𝐿)
1713, 14, 15, 6, 7, 16islindf 21719 . . . . 5 ((𝑊 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
189, 12, 17syl2anc 584 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
195, 18mpbid 232 . . 3 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))))
2019simprd 495 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))
21 fveq2 6822 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
2221oveq2d 7365 . . . . 5 (𝑒 = 𝐸 → (𝑎 · (𝐹𝑒)) = (𝑎 · (𝐹𝐸)))
23 sneq 4587 . . . . . . . 8 (𝑒 = 𝐸 → {𝑒} = {𝐸})
2423difeq2d 4077 . . . . . . 7 (𝑒 = 𝐸 → (dom 𝐹 ∖ {𝑒}) = (dom 𝐹 ∖ {𝐸}))
2524imaeq2d 6011 . . . . . 6 (𝑒 = 𝐸 → (𝐹 “ (dom 𝐹 ∖ {𝑒})) = (𝐹 “ (dom 𝐹 ∖ {𝐸})))
2625fveq2d 6826 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) = (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
2722, 26eleq12d 2822 . . . 4 (𝑒 = 𝐸 → ((𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
2827notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ ¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
29 oveq1 7356 . . . . 5 (𝑎 = 𝐴 → (𝑎 · (𝐹𝐸)) = (𝐴 · (𝐹𝐸)))
3029eleq1d 2813 . . . 4 (𝑎 = 𝐴 → ((𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3130notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3228, 31rspc2va 3589 . 2 (((𝐸 ∈ dom 𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
331, 4, 20, 32syl21anc 837 1 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3436  cdif 3900  {csn 4577   class class class wbr 5092  dom cdm 5619  cima 5622  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LSpanclspn 20874   LIndF clindf 21711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-slot 17093  df-ndx 17105  df-base 17121  df-lindf 21713
This theorem is referenced by:  lindfind2  21725  lindfrn  21728  f1lindf  21729
  Copyright terms: Public domain W3C validator