Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. 2
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐸 ∈ dom 𝐹) |
2 | | eldifsn 4720 |
. . . 4
⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) |
3 | 2 | biimpri 227 |
. . 3
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ (𝐾 ∖ { 0 })) |
4 | 3 | adantl 482 |
. 2
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐴 ∈ (𝐾 ∖ { 0 })) |
5 | | simpll 764 |
. . . 4
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐹 LIndF 𝑊) |
6 | | lindfind.l |
. . . . . . 7
⊢ 𝐿 = (Scalar‘𝑊) |
7 | | lindfind.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐿) |
8 | 6, 7 | elbasfv 16918 |
. . . . . 6
⊢ (𝐴 ∈ 𝐾 → 𝑊 ∈ V) |
9 | 8 | ad2antrl 725 |
. . . . 5
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝑊 ∈ V) |
10 | | rellindf 21015 |
. . . . . . 7
⊢ Rel
LIndF |
11 | 10 | brrelex1i 5643 |
. . . . . 6
⊢ (𝐹 LIndF 𝑊 → 𝐹 ∈ V) |
12 | 11 | ad2antrr 723 |
. . . . 5
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐹 ∈ V) |
13 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑊) =
(Base‘𝑊) |
14 | | lindfind.s |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑊) |
15 | | lindfind.n |
. . . . . 6
⊢ 𝑁 = (LSpan‘𝑊) |
16 | | lindfind.z |
. . . . . 6
⊢ 0 =
(0g‘𝐿) |
17 | 13, 14, 15, 6, 7, 16 | islindf 21019 |
. . . . 5
⊢ ((𝑊 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))))) |
18 | 9, 12, 17 | syl2anc 584 |
. . . 4
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))))) |
19 | 5, 18 | mpbid 231 |
. . 3
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))) |
20 | 19 | simprd 496 |
. 2
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ∀𝑒 ∈ dom 𝐹∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))) |
21 | | fveq2 6774 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (𝐹‘𝑒) = (𝐹‘𝐸)) |
22 | 21 | oveq2d 7291 |
. . . . 5
⊢ (𝑒 = 𝐸 → (𝑎 · (𝐹‘𝑒)) = (𝑎 · (𝐹‘𝐸))) |
23 | | sneq 4571 |
. . . . . . . 8
⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) |
24 | 23 | difeq2d 4057 |
. . . . . . 7
⊢ (𝑒 = 𝐸 → (dom 𝐹 ∖ {𝑒}) = (dom 𝐹 ∖ {𝐸})) |
25 | 24 | imaeq2d 5969 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (𝐹 “ (dom 𝐹 ∖ {𝑒})) = (𝐹 “ (dom 𝐹 ∖ {𝐸}))) |
26 | 25 | fveq2d 6778 |
. . . . 5
⊢ (𝑒 = 𝐸 → (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) = (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
27 | 22, 26 | eleq12d 2833 |
. . . 4
⊢ (𝑒 = 𝐸 → ((𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ (𝑎 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))) |
28 | 27 | notbid 318 |
. . 3
⊢ (𝑒 = 𝐸 → (¬ (𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ ¬ (𝑎 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))) |
29 | | oveq1 7282 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 · (𝐹‘𝐸)) = (𝐴 · (𝐹‘𝐸))) |
30 | 29 | eleq1d 2823 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))) |
31 | 30 | notbid 318 |
. . 3
⊢ (𝑎 = 𝐴 → (¬ (𝑎 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))) |
32 | 28, 31 | rspc2va 3571 |
. 2
⊢ (((𝐸 ∈ dom 𝐹 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ dom 𝐹∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹‘𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |
33 | 1, 4, 20, 32 | syl21anc 835 |
1
⊢ (((𝐹 LIndF 𝑊 ∧ 𝐸 ∈ dom 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · (𝐹‘𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))) |