MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind Structured version   Visualization version   GIF version

Theorem lindfind 21753
Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindfind (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))

Proof of Theorem lindfind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸 ∈ dom 𝐹)
2 eldifsn 4735 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 simpll 766 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 LIndF 𝑊)
6 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
7 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
86, 7elbasfv 17126 . . . . . 6 (𝐴𝐾𝑊 ∈ V)
98ad2antrl 728 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝑊 ∈ V)
10 rellindf 21745 . . . . . . 7 Rel LIndF
1110brrelex1i 5670 . . . . . 6 (𝐹 LIndF 𝑊𝐹 ∈ V)
1211ad2antrr 726 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 ∈ V)
13 eqid 2731 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 lindfind.s . . . . . 6 · = ( ·𝑠𝑊)
15 lindfind.n . . . . . 6 𝑁 = (LSpan‘𝑊)
16 lindfind.z . . . . . 6 0 = (0g𝐿)
1713, 14, 15, 6, 7, 16islindf 21749 . . . . 5 ((𝑊 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
189, 12, 17syl2anc 584 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
195, 18mpbid 232 . . 3 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))))
2019simprd 495 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))
21 fveq2 6822 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
2221oveq2d 7362 . . . . 5 (𝑒 = 𝐸 → (𝑎 · (𝐹𝑒)) = (𝑎 · (𝐹𝐸)))
23 sneq 4583 . . . . . . . 8 (𝑒 = 𝐸 → {𝑒} = {𝐸})
2423difeq2d 4073 . . . . . . 7 (𝑒 = 𝐸 → (dom 𝐹 ∖ {𝑒}) = (dom 𝐹 ∖ {𝐸}))
2524imaeq2d 6008 . . . . . 6 (𝑒 = 𝐸 → (𝐹 “ (dom 𝐹 ∖ {𝑒})) = (𝐹 “ (dom 𝐹 ∖ {𝐸})))
2625fveq2d 6826 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) = (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
2722, 26eleq12d 2825 . . . 4 (𝑒 = 𝐸 → ((𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
2827notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ ¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
29 oveq1 7353 . . . . 5 (𝑎 = 𝐴 → (𝑎 · (𝐹𝐸)) = (𝐴 · (𝐹𝐸)))
3029eleq1d 2816 . . . 4 (𝑎 = 𝐴 → ((𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3130notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3228, 31rspc2va 3584 . 2 (((𝐸 ∈ dom 𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
331, 4, 20, 32syl21anc 837 1 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  {csn 4573   class class class wbr 5089  dom cdm 5614  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LSpanclspn 20904   LIndF clindf 21741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-1cn 11064  ax-addcl 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126  df-slot 17093  df-ndx 17105  df-base 17121  df-lindf 21743
This theorem is referenced by:  lindfind2  21755  lindfrn  21758  f1lindf  21759
  Copyright terms: Public domain W3C validator