MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindfind Structured version   Visualization version   GIF version

Theorem lindfind 21758
Description: A linearly independent family is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindfind (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))

Proof of Theorem lindfind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸 ∈ dom 𝐹)
2 eldifsn 4746 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 simpll 766 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 LIndF 𝑊)
6 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
7 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
86, 7elbasfv 17161 . . . . . 6 (𝐴𝐾𝑊 ∈ V)
98ad2antrl 728 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝑊 ∈ V)
10 rellindf 21750 . . . . . . 7 Rel LIndF
1110brrelex1i 5687 . . . . . 6 (𝐹 LIndF 𝑊𝐹 ∈ V)
1211ad2antrr 726 . . . . 5 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐹 ∈ V)
13 eqid 2729 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
14 lindfind.s . . . . . 6 · = ( ·𝑠𝑊)
15 lindfind.n . . . . . 6 𝑁 = (LSpan‘𝑊)
16 lindfind.z . . . . . 6 0 = (0g𝐿)
1713, 14, 15, 6, 7, 16islindf 21754 . . . . 5 ((𝑊 ∈ V ∧ 𝐹 ∈ V) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
189, 12, 17syl2anc 584 . . . 4 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹 LIndF 𝑊 ↔ (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))))
195, 18mpbid 232 . . 3 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → (𝐹:dom 𝐹⟶(Base‘𝑊) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))))
2019simprd 495 . 2 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))))
21 fveq2 6840 . . . . . 6 (𝑒 = 𝐸 → (𝐹𝑒) = (𝐹𝐸))
2221oveq2d 7385 . . . . 5 (𝑒 = 𝐸 → (𝑎 · (𝐹𝑒)) = (𝑎 · (𝐹𝐸)))
23 sneq 4595 . . . . . . . 8 (𝑒 = 𝐸 → {𝑒} = {𝐸})
2423difeq2d 4085 . . . . . . 7 (𝑒 = 𝐸 → (dom 𝐹 ∖ {𝑒}) = (dom 𝐹 ∖ {𝐸}))
2524imaeq2d 6020 . . . . . 6 (𝑒 = 𝐸 → (𝐹 “ (dom 𝐹 ∖ {𝑒})) = (𝐹 “ (dom 𝐹 ∖ {𝐸})))
2625fveq2d 6844 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) = (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
2722, 26eleq12d 2822 . . . 4 (𝑒 = 𝐸 → ((𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
2827notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒}))) ↔ ¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
29 oveq1 7376 . . . . 5 (𝑎 = 𝐴 → (𝑎 · (𝐹𝐸)) = (𝐴 · (𝐹𝐸)))
3029eleq1d 2813 . . . 4 (𝑎 = 𝐴 → ((𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3130notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))) ↔ ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸})))))
3228, 31rspc2va 3597 . 2 (((𝐸 ∈ dom 𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ dom 𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · (𝐹𝑒)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝑒})))) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
331, 4, 20, 32syl21anc 837 1 (((𝐹 LIndF 𝑊𝐸 ∈ dom 𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · (𝐹𝐸)) ∈ (𝑁‘(𝐹 “ (dom 𝐹 ∖ {𝐸}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3444  cdif 3908  {csn 4585   class class class wbr 5102  dom cdm 5631  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  LSpanclspn 20909   LIndF clindf 21746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-lindf 21748
This theorem is referenced by:  lindfind2  21760  lindfrn  21763  f1lindf  21764
  Copyright terms: Public domain W3C validator