![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiALT | Structured version Visualization version GIF version |
Description: Alternate proof of relopabi 5822 (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relopabi.1 | ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiALT | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | df-opab 5211 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
3 | 1, 2 | eqtri 2760 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
4 | vex 3478 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3478 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | opelvv 5716 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ (V × V) |
7 | eleq1 2821 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V))) | |
8 | 6, 7 | mpbiri 257 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V)) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V)) |
10 | 9 | exlimivv 1935 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V)) |
11 | 10 | abssi 4067 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V) |
12 | 3, 11 | eqsstri 4016 | . 2 ⊢ 𝐴 ⊆ (V × V) |
13 | df-rel 5683 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
14 | 12, 13 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 {cab 2709 Vcvv 3474 ⊆ wss 3948 ⟨cop 4634 {copab 5210 × cxp 5674 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-xp 5682 df-rel 5683 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |