MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relopabiALT Structured version   Visualization version   GIF version

Theorem relopabiALT 5819
Description: Alternate proof of relopabi 5818 (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabiALT Rel 𝐴

Proof of Theorem relopabiALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 5206 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2753 . . 3 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 vex 3467 . . . . . . . 8 𝑥 ∈ V
5 vex 3467 . . . . . . . 8 𝑦 ∈ V
64, 5opelvv 5712 . . . . . . 7 𝑥, 𝑦⟩ ∈ (V × V)
7 eleq1 2813 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V)))
86, 7mpbiri 257 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V))
98adantr 479 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
109exlimivv 1927 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
1110abssi 4059 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V)
123, 11eqsstri 4007 . 2 𝐴 ⊆ (V × V)
13 df-rel 5679 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
1412, 13mpbir 230 1 Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2702  Vcvv 3463  wss 3940  cop 4630  {copab 5205   × cxp 5670  Rel wrel 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3943  df-un 3945  df-ss 3957  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-opab 5206  df-xp 5678  df-rel 5679
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator