MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relopabiALT Structured version   Visualization version   GIF version

Theorem relopabiALT 5761
Description: Alternate proof of relopabi 5760 (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
relopabi.1 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
Assertion
Ref Expression
relopabiALT Rel 𝐴

Proof of Theorem relopabiALT
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 relopabi.1 . . . 4 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 df-opab 5152 . . . 4 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
31, 2eqtri 2753 . . 3 𝐴 = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 vex 3438 . . . . . . . 8 𝑥 ∈ V
5 vex 3438 . . . . . . . 8 𝑦 ∈ V
64, 5opelvv 5654 . . . . . . 7 𝑥, 𝑦⟩ ∈ (V × V)
7 eleq1 2817 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V)))
86, 7mpbiri 258 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V))
98adantr 480 . . . . 5 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
109exlimivv 1933 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V))
1110abssi 4018 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V)
123, 11eqsstri 3979 . 2 𝐴 ⊆ (V × V)
13 df-rel 5621 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
1412, 13mpbir 231 1 Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  wcel 2110  {cab 2708  Vcvv 3434  wss 3900  cop 4580  {copab 5151   × cxp 5612  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-opab 5152  df-xp 5620  df-rel 5621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator