![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relopabiALT | Structured version Visualization version GIF version |
Description: Alternate proof of relopabi 5818 (shorter but uses more axioms). (Contributed by Mario Carneiro, 21-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
relopabi.1 | ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
Ref | Expression |
---|---|
relopabiALT | ⊢ Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | . . . 4 ⊢ 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} | |
2 | df-opab 5206 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} | |
3 | 1, 2 | eqtri 2753 | . . 3 ⊢ 𝐴 = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
4 | vex 3467 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
5 | vex 3467 | . . . . . . . 8 ⊢ 𝑦 ∈ V | |
6 | 4, 5 | opelvv 5712 | . . . . . . 7 ⊢ ⟨𝑥, 𝑦⟩ ∈ (V × V) |
7 | eleq1 2813 | . . . . . . 7 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑧 ∈ (V × V) ↔ ⟨𝑥, 𝑦⟩ ∈ (V × V))) | |
8 | 6, 7 | mpbiri 257 | . . . . . 6 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 ∈ (V × V)) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V)) |
10 | 9 | exlimivv 1927 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) → 𝑧 ∈ (V × V)) |
11 | 10 | abssi 4059 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} ⊆ (V × V) |
12 | 3, 11 | eqsstri 4007 | . 2 ⊢ 𝐴 ⊆ (V × V) |
13 | df-rel 5679 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
14 | 12, 13 | mpbir 230 | 1 ⊢ Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2702 Vcvv 3463 ⊆ wss 3940 ⟨cop 4630 {copab 5205 × cxp 5670 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-opab 5206 df-xp 5678 df-rel 5679 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |